Analytical Mechanics of Space Systems 4th edition [Kietas viršelis]

  • Formatas: Hardback
  • Serija: AIAA Education Series
  • Išleidimo metai: 27-Sep-2018
  • Leidėjas: American Institute of Aeronautics & Astronautics
  • ISBN-10: 1624105211
  • ISBN-13: 9781624105210
Kitos knygos pagal šią temą:
  • Formatas: Hardback
  • Serija: AIAA Education Series
  • Išleidimo metai: 27-Sep-2018
  • Leidėjas: American Institute of Aeronautics & Astronautics
  • ISBN-10: 1624105211
  • ISBN-13: 9781624105210
Kitos knygos pagal šią temą:
Analytical Mechanics of Space Systems, Fourth Edition iterates on an already mature text by expanding some developments and discussions, as well as by including new content from spacecraft dynamics research over the last decade. It provides comprehensive treatment of dynamics of space systems, starting with the fundamentals and covering topics from basic kinematics and dynamics to more advanced celestial mechanics. Taking a tutorial approach, the text guides the reader through the various derivations and proofs to explain the principles underlying the equations at issue, and shows how to apply them to various dynamical systems. Part I covers analytical treatment of basic dynamic principles through advanced energy concepts, including use of rotating reference frames that often occur in aerospace systems. Part II covers basic celestial mechanics, treating the two-body problem, restricted three-body problem, gravity field modelling, perturbation methods, spacecraft formation flying, and orbit transfers. MATLAB, Mathematical, Python, and C-Code toolboxes are provided for rigid body kinematics routines and basic orbital 2-body orbital mechanics routines.
Preface to the Fourth Edition xvii
Preface to the Third Edition xix
Preface to the Second Edition xxi
Preface to the First Edition xxiii
PART 1 BASIC MECHANICS
Chapter 1 Particle Kinematics
1(32)
1.1 Introduction
1(1)
1.2 Particle Position Description
1(5)
1.3 Vector Differentiation
6(27)
References
23(1)
Problems
23(10)
Chapter 2 Newtonian Mechanics
33(50)
2.1 Introduction
33(1)
2.2 Newton's Laws
33(5)
2.3 Single Particle Dynamics
38(11)
2.4 Dynamics of a System of Particles
49(15)
2.5 Dynamics of a Continuous System
64(6)
2.6 Rocket Problem
70(13)
References
76(1)
Problems
76(7)
Chapter 3 Rigid Body Kinematics
83(82)
3.1 Introduction
83(1)
3.2 Direction Cosine Matrix
84(6)
3.3 Euler Angles
90(9)
3.4 Principal Rotation Vector
99(9)
3.5 Euler Parameters
108(8)
3.6 Classical Rodrigues Parameters
116(6)
3.7 Modified Rodrigues Parameters
122(10)
3.8 Other Attitude Parameters
132(6)
3.9 Homogeneous Transformations
138(3)
3.10 Deterministic Attitude Estimation
141(24)
References
155(3)
Problems
158(7)
Chapter 4 Eulerian Mechanics
165(80)
4.1 Introduction
165(1)
4.2 Rigid Body Dynamics
165(28)
4.3 Torque-Free Rigid Body Rotation
193(10)
4.4 Dual-Spin Spacecraft
203(7)
4.5 Momentum Exchange Devices
210(14)
4.6 Gravity Gradient Satellite
224(21)
References
234(1)
Problems
235(10)
Chapter 5 Generalized Methods of Analytical Dynamics
245(82)
5.1 Introduction
245(1)
5.2 Generalized Coordinates
245(3)
5.3 D'Alembert's Principle
248(29)
5.4 Lagrangian Dynamics
277(23)
5.5 Quasi Coordinates
300(8)
5.6 Cyclic Coordinates
308(8)
5.7 Final Observations
316(11)
References
317(1)
Problems
317(10)
Chapter 6 Variational Methods in Analytical Dynamics
327(32)
6.1 Introduction
327(1)
6.2 Fundamentals of Variational Calculus
327(4)
6.3 Hamilton's Variational Principles
331(5)
6.4 Hamilton's Principal Function
336(2)
6.5 Some Classical Applications of Hamilton's Principle to Distributed Parameter Systems
338(8)
6.6 Explicit Generalizations of Lagrange's Equations for Hybrid Coordinate Systems
346(13)
References
355(1)
Problems
355(4)
Chapter 7 Hamilton's Generalized Formulations of Analytical Dynamics
359(28)
7.1 Introduction
359(1)
7.2 Hamiltonian Function
359(5)
7.3 Relationship of Hamiltonian Function to Work/Energy Integral
364(5)
7.4 Hamilton's Canonical Equations
369(4)
7.5 Poisson's Brackets
373(3)
7.6 Canonical Coordinate Transformations
376(3)
7.7 Perfect Differential Criterion for Canonical Transformations
379(3)
7.8 Transformation Jacobian Perspective on Canonical Transformations
382(5)
References
384(1)
Problems
384(3)
Chapter 8 Nonlinear Spacecraft Stability and Control
387(132)
8.1 Introduction
387(1)
8.2 Nonlinear Stability Analysis
387(19)
8.3 Generating Lyapunov Functions
406(23)
8.4 Nonlinear Feedback Control Laws
429(22)
8.5 Lyapunov Optimal Control Laws
451(6)
8.6 Linear Closed-Loop Dynamics
457(5)
8.7 Reaction Wheel Control Devices
462(19)
8.8 Variable Speed Control Moment Gyroscopes
481(38)
References
509(2)
Problems
511(8)
PART 2 CELESTIAL MECHANICS
Chapter 9 Classical Two-Body Problem
519(58)
9.1 Introduction
519(1)
9.2 Geometry of Conic Sections
520(8)
9.3 Coordinate Systems
528(10)
9.4 Relative Two-Body Equations of Motion
538(3)
9.5 Fundamental Integrals
541(12)
9.6 Classical Solutions
553(24)
References
569(1)
Problems
570(7)
Chapter 10 Restricted Three-Body Problem
577(44)
10.1 Introduction
577(1)
10.2 Lagrange's Three-Body Solution
577(15)
10.3 Circular Restricted Three-Body Problem
592(21)
10.4 Periodic Stationary Orbits
613(1)
10.5 Disturbing Function
614(4)
References
618(1)
Problems
618(3)
Chapter 11 Gravitational Potential Field Models
621(26)
11.1 Introduction
621(1)
11.2 Gravitational Potential of Finite Bodies
622(3)
11.3 MacCullagh's Approximation
625(4)
11.4 Spherical Harmonic Gravity Potential
629(11)
11.5 Multibody Gravitational Acceleration
640(2)
11.6 Spheres of Gravitational Influence
642(3)
References
645(1)
Problems
645(2)
Chapter 12 Perturbation Methods
647(58)
12.1 Introduction
647(1)
12.2 Encke's Method
648(2)
12.3 Variation of Parameters
650(35)
12.4 State Transition and Sensitivity Matrix
685(15)
References
700(1)
Problems
700(5)
Chapter 13 Transfer Orbits
705(62)
13.1 Introduction
705(1)
13.2 Minimum Energy Orbit
705(4)
13.3 Hohmann Transfer Orbit
709(7)
13.4 Lambert's Problem
716(12)
13.5 Rotating the Orbit Plane
728(5)
13.6 Patched-Conic Orbit Solution
733(34)
References
760(1)
Problems
761(6)
Chapter 14 Spacecraft Formation Flying
767(96)
14.1 Introduction
767(1)
14.2 General Relative Orbit Description
768(3)
14.3 Cartesian Coordinate Description
771(17)
14.4 Orbit Element Difference Description
788(11)
14.5 Relative Motion State Transition Matrix
799(6)
14.6 Linearized Relative Orbit Motion
805(11)
14.7 J2-Invariant Relative Orbits
816(21)
14.8 Relative Orbit Control Methods
837(26)
References
858(2)
Problems
860(3)
Appendix A Transport Theorem Derivation Using Linear Algebra 863(4)
Appendix B Various Euler Angle Transformations 867(4)
Appendix C MRP Identity Proof 871(2)
Appendix D Conic Section Transformations 873(4)
Appendix E Numerical Subroutines Library 877(6)
Appendix F First-Order Mapping Between Mean and Osculating Orbit Elements 883(4)
Appendix G Direct Linear Mapping Between Cartesian Hill Frame Coordinates and Orbit Element Differences 887(2)
Appendix H Hamel Coefficients for the Rotational Motion of a Rigid Body 889(8)
Appendix I MRP Kalman Filter 897(8)
Index 905(20)
Supporting Materials 925