Construction Materials: Their Nature and Behaviour, Fifth Edition 5th New edition [Minkštas viršelis]

Edited by , Edited by
  • Formatas: Paperback / softback, 820 pages, aukštis x plotis: 254x178 mm, weight: 1497 g, 10 Line drawings, color; 369 Line drawings, black and white; 57 Halftones, color; 16 Halftones, black and white; 94 Tables, black and white
  • Išleidimo metai: 03-Oct-2017
  • Leidėjas: Productivity Press
  • ISBN-10: 149874110X
  • ISBN-13: 9781498741101
Kitos knygos pagal šią temą:
  • Formatas: Paperback / softback, 820 pages, aukštis x plotis: 254x178 mm, weight: 1497 g, 10 Line drawings, color; 369 Line drawings, black and white; 57 Halftones, color; 16 Halftones, black and white; 94 Tables, black and white
  • Išleidimo metai: 03-Oct-2017
  • Leidėjas: Productivity Press
  • ISBN-10: 149874110X
  • ISBN-13: 9781498741101
Kitos knygos pagal šią temą:

This established textbook provides an understanding of materials’ behaviour through knowledge of their chemical and physical structure. It covers the main classes of construction materials: metals, concrete, other ceramics (including bricks and masonry), polymers, fibre composites, bituminous materials, timber, and glass. It provides a clear and comprehensive perspective on the whole range of materials used in modern construction, to form a must-have for civil and structural engineering students, and those on courses such as architecture, surveying and construction.

It begins with a Fundamentals section followed by a section on each of the major groups of materials. In this new edition:

- Typical questions with answers to any numerical examples are given at the end of each section, as well as an instructors manual with further questions and answers.

- Coverage of sustainability is markedly increased, to include the drivers for sustainable construction and eco-friendly buildings.

- Links are given to free reports from The Concrete Centre, Corus, and others, as well as to material suppliers’ websites.

- The masonry section is entirely overhauled and extended beyond the basics of load bearing masonry, and to include the flexi-arch and hollow core bricks used in mainland Europe for infill walls.

Recenzijos

"This book is exceptional in both coverage and content." -- Peter C. Hewlett, Magazine of Concrete Research, June 2018 "A book giving up-to-date comprehensive knowledge on construction materials which will be the first choice book for lecturers teaching construction materials to civil engineering students on UK undergraduate and postgraduate taught courses." -- Toby Mottram, University of Warwick "A must have text book for those teaching or studying materials science applied to civil engineering." -- Juliana Calabria-Holley, University of Bath "This book is very good for teaching civil and construction engineers students about material science. The text goes from fundamental principles in the first chapters to practical use of the building materials." -- Eythor Thorhallsson, Reykjavik University "The notion of underpinning engineering materials with 'atomistics' is well presented and is particularly vital for both understanding and novelty" -- Adegoke Olubanwo, Coventry University "The best and most comprehensive textbook on construction materials targeted for undergraduate students following a civil engineering or similar degree programme." -- Hussain Al Khalid, Liverpool University

Preface xxix
Acknowledgements xxxix
Editors xli
Contributors xliii
Part I Fundamentals
Peter Domone
Marios Soutsos
1 Atoms, bonding, energy and equilibrium
3(20)
1.1 Atomic structure
3(3)
1.2 Bonding of atoms
6(5)
1.2.1 Ionic bonding
6(1)
1.2.2 Covalent bonding
7(2)
1.2.3 Metallic bonds
9(1)
1.2.4 Van der Waals bonds and the hydrogen bond
10(1)
1.3 Energy and entropy
11(3)
1.3.1 Stable and metastable equilibrium
12(1)
1.3.2 Mixing
12(1)
1.3.3 Entropy
13(1)
1.3.4 Free energy
13(1)
1.4 Equilibrium and equilibrium diagrams
14(7)
1.4.1 Single component diagrams
15(1)
1.4.2 Two-component diagrams
16(2)
1.4.3 Eutectic systems
18(1)
1.4.4 Intermediate compounds
19(2)
References
21(2)
2 Mechanical properties of solids
23(24)
2.1 Stress, strain and stress-strain curves
23(3)
2.2 Elastic behaviour and the elastic constants
26(3)
2.2.1 The elastic moduli
26(1)
2.2.2 Poisson's ratio
27(1)
2.2.3 Relationships between the elastic constants
28(1)
2.2.4 Work done in deformation
29(1)
2.3 Plastic deformation
29(2)
2.4 Failure in tension
31(1)
2.5 True stress and strain
32(1)
2.6 Behaviour in compression
33(2)
2.6.1 Plastic deformation of ductile materials
33(1)
2.6.2 Failure of brittle materials
33(2)
2.7 Behaviour under constant load: Creep
35(2)
2.8 Behaviour under cyclic loading: Fatigue
37(3)
2.8.1 Fatigue life and SIN curves
37(2)
2.8.2 Cumulative fatigue damage: Miner's rule
39(1)
2.9 Impact loading
40(1)
2.10 Variability, characteristic strength and the Weibull distribution
41(5)
2.10.1 Descriptions of variability
42(1)
2.10.2 Characteristic strength
43(2)
2.10.3 The Weibull distribution
45(1)
References
46(1)
3 Structure of solids
47(12)
3.1 Crystal structure
47(5)
3.2 Imperfection and impurities
52(1)
3.3 Crystal growth and grain structure
53(1)
3.4 Ceramics
54(2)
3.5 Polymers
56(2)
Reference
58(1)
4 Fracture and toughness
59(8)
4.1 Theoretical strength
59(2)
4.2 Fracture mechanics
61(4)
Reference
65(2)
5 Liquids, viscoelasticity and gels
67(6)
5.1 Liquids
67(2)
5.2 Viscoelastic behaviour
69(2)
5.3 Gels and thixotropy
71(2)
6 Surfaces
73(8)
6.1 Surface energy
73(1)
6.2 Wetting
74(2)
6.3 Adhesives
76(2)
6.4 Adsorption
78(1)
6.5 Water of crystallisation
79(2)
7 Electrical and thermal properties
81(2)
7.1 Electrical conductivity
81(1)
7.2 Thermal conductivity
82(1)
7.3 Coefficient of thermal expansion
82(1)
Example questions for Part I Fundamentals
83(2)
Further reading for Part I Fundamentals
85(2)
Part II Metals and alloys 87(44)
Marios Soutsos
Peter Domone
8 Deformation and strengthening of metals
89(8)
8.1 Elasticity and plasticity
89(1)
8.2 Dislocation movement
89(2)
8.3 Dislocation energy
91(1)
8.4 Strengthening of metals
91(4)
8.4.1 Grain size
92(1)
8.4.2 Strain hardening
93(1)
8.4.3 Annealing
93(1)
8.4.4 Alloying
93(1)
8.4.5 Quenching and tempering
94(1)
8.5 Strengthening, ductility and toughness
95(1)
References
95(2)
9 Forming of metals
97(6)
9.1 Castings
97(1)
9.2 Hot working
97(2)
9.3 Cold working
99(1)
9.4 Joining
99(2)
9.4.1 Welding
99(1)
9.4.2 Brazing, soldering and gluing
100(1)
9.4.3 Bolting and riveting
101(1)
Reference
101(2)
10 Oxidation and corrosion
103(8)
10.1 Dry oxidation
103(1)
10.2 Wet corrosion
104(1)
10.3 The electromotive series
104(2)
10.4 Localised corrosion
106(1)
10.4.1 Intergranular attack
106(1)
10.4.2 Concentration cell corrosion
106(1)
10.4.3 Stress corrosion cracking
107(1)
10.4.4 Corrosion fatigue
107(1)
10.5 Corrosion prevention
107(2)
10.5.1 Design
107(1)
10.5.2 Coatings
108(1)
10.5.3 Cathodic protection
108(1)
10.6 Corrosion control
109(1)
Reference
109(2)
11 Iron and steel
111(14)
11.1 Extraction of iron
111(1)
11.2 Iron-carbon equilibrium diagram
112(2)
11.3 Cast irons
114(1)
11.4 Steel
115(8)
11.4.1 Hot-rolled structural steels
116(4)
11.4.2 Cold-rolled steels
120(1)
11.4.3 Stainless steel
120(1)
11.4.4 Steel reinforcement for concrete
121(1)
11.4.5 Prestressing steel
122(1)
11.5 Recycling of steel
123(1)
References
124(1)
12 Aluminium
125(3)
12.1 Extraction
125(1)
12.2 Aluminium alloys
125(2)
12.3 Recycling of aluminium
127(1)
Example questions for Part II Metals and alloys
128(1)
Further reading for Part II Metals and alloys
129(2)
Part III Concrete 131(188)
Marios Soutsos
Peter Domone
13 Portland cements
137(18)
13.1 Manufacture
137(1)
13.2 Physical properties
138(1)
13.3 Chemical composition
139(2)
13.4 Hydration
141(6)
13.5 Structure and strength of hcp
147(2)
13.6 Water in hcp and drying shrinkage
149(2)
13.7 Modifications of Portland cement
151(1)
13.7.1 Setting, strength gain and heat output
151(1)
13.7.2 Sulphate resistance
151(1)
13.7.3 White cement
151(1)
13.8 Cement standards and nomenclature
152(1)
References
153(2)
14 Admixtures
155(10)
14.1 Action and classification of admixtures
155(1)
14.2 Plasticisers
156(1)
14.3 Superplasticisers
157(2)
14.4 Accelerators
159(1)
14.5 Retarders
160(1)
14.6 Air-entraining agents
161(1)
14.7 Other types of admixtures
162(1)
References
163(2)
15 Additions
165(6)
15.1 Pozzolanic behaviour
166(1)
15.2 Common additions
166(1)
15.3 Chemical composition and physical properties
167(1)
15.4 Supply and specification
168(3)
16 Other types of cement
171(8)
16.1 Calcium aluminate cement
171(4)
16.1.1 Manufacture and composition
171(1)
16.1.2 Hydration and conversion
172(1)
16.1.3 Uses
173(2)
16.2 Alkali-activated cements
175(1)
16.3 Geopolymer cements
175(1)
16.4 Magnesium oxide-based cements
176(1)
16.5 Waste-derived cements
176(1)
References
176(3)
17 Aggregates for concrete
179(8)
17.1 Types of primary aggregates
180(1)
17.1.1 Normal-density aggregates
180(1)
17.1.2 Lightweight aggregate
180(1)
17.1.3 Heavyweight aggregates
180(1)
17.2 Aggregate classification: Shape and size
180(4)
17.3 Other properties of aggregates
184(1)
17.3.1 Porosity and absorption
184(1)
17.3.2 Elastic properties and strength
184(1)
17.3.3 Surface characteristics
185(1)
17.4 Secondary aggregates
185(1)
References
185(2)
18 Properties of fresh concrete
187(10)
18.1 General behaviour
187(1)
18.2 Measurement of consistence
188(5)
18.2.1 Fundamental properties
188(1)
18.2.2 Single-point tests
189(4)
18.3 Factors affecting consistence
193(1)
18.4 Loss of consistence
194(1)
References
195(2)
19 Early-age properties of concrete
197(10)
19.1 Behaviour after placing
197(3)
19.1.1 Segregation and bleeding
197(1)
19.1.2 Plastic settlement
198(1)
19.1.3 Plastic shrinkage
198(1)
19.1.4 Methods of reducing segregation and bleed and their effects
199(1)
19.2 Curing
200(1)
19.3 Strength gain and temperature effects
200(5)
19.3.1 Effect of temperature
200(1)
19.3.2 Maturity
200(2)
19.3.3 Heat of hydration effects
202(3)
References
205(2)
20 Deformation of concrete
207(22)
20.1 Drying shrinkage
207(8)
20.1.1 Drying shrinkage of hcp
207(2)
20.1.2 Mechanisms of shrinkage and swelling
209(1)
20.1.2.1 Capillary tension
210(1)
20.1.2.2 Surface tension or surface energy
211(1)
20.1.2.3 Disjoining pressure
211(1)
20.1.2.4 Movement of interlayer water
212(1)
20.1.3 Drying shrinkage of concrete
212(1)
20.1.3.1 Effect of mix constituents and proportions
212(1)
20.1.3.2 Effect of specimen geometry
213(1)
20.1.4 Prediction of shrinkage
214(1)
20.2 Autogenous shrinkage
215(1)
20.3 Carbonation shrinkage
215(1)
20.4 Thermal expansion
215(2)
20.4.1 Thermal expansion of hcp
216(1)
20.4.2 Thermal expansion of concrete
216(1)
20.5 Stress-strain behaviour
217(6)
20.5.1 Elasticity of the hcp
217(1)
20.5.2 Models for concrete behaviour
218(1)
20.5.2.1 Model A: Phases in parallel
219(1)
20.5.2.2 Model B: Phases in series
220(1)
20.5.2.3 Model C: Combined
220(1)
20.5.3 Measured stress-strain behaviour of concrete
221(1)
20.5.4 Elastic modulus of concrete
222(1)
20.5.5 Poisson's ratio
223(1)
20.6 Creep
223(4)
20.6.1 Factors influencing creep
225(1)
20.6.2 Mechanisms of creep
226(1)
20.6.2.1 Moisture diffusion
226(1)
20.6.2.2 Structural adjustment
226(1)
20.6.2.3 Microcracking
227(1)
20.6.2.4 Delayed elastic strain
227(1)
20.6.3 Prediction of creep
227(1)
References
227(2)
21 Strength and failure of concrete
229(20)
21.1 Strength tests
229(6)
21.1.1 Compressive strength
229(3)
21.1.2 Tensile strength
232(1)
21.1.2.1 Splitting test
232(1)
21.1.2.2 Flexural test
233(1)
21.1.3 Relationship between strength measurements
234(1)
21.2 Factors influencing strength of Portland cement concrete
235(6)
21.2.1 Transition/interface zone
235(1)
21.2.2 Water/cement ratio
236(2)
21.2.3 Age
238(1)
21.2.4 Temperature
239(1)
21.2.5 Humidity
239(1)
21.2.6 Aggregate properties, size and volume concentration
240(1)
21.3 Strength of concrete containing additions
241(2)
21.4 Cracking and fracture in concrete
243(3)
21.4.1 Development of microcracking
243(1)
21.4.2 Creep rupture
244(1)
21.4.3 The fracture mechanics approach
245(1)
21.5 Strength under multiaxial loading
246(1)
References
247(2)
22 Concrete mix design
249(10)
22.1 The mix design process
249(2)
22.1.1 Specified concrete properties
249(1)
22.1.2 Constituent material properties
250(1)
22.1.3 Initial estimate of mix proportions
250(1)
22.1.4 Laboratory trial mixes
251(1)
22.1.5 Full-scale trial mixes
251(1)
22.2 U.K. method of 'Design of normal concrete mixes' (BRE, 1997)
251(4)
22.2.1 Target mean strength
251(1)
22.2.2 Free water/cement ratio
252(1)
22.2.3 Free water content
252(1)
22.2.4 Cement content
252(1)
22.2.5 Total aggregate content
253(1)
22.2.6 Fine and coarse aggregate content
254(1)
22.3 Mix design with additions
255(1)
22.4 Design of mixes containing admixtures
256(1)
22.4.1 Mixes with plasticisers
256(1)
22.4.2 Mixes with superplasticisers
256(1)
22.4.3 Mixes with air-entraining agents
257(1)
22.5 Other mix design methods
257(1)
References
257(2)
23 Non-destructive testing of hardened concrete
259(8)
23.1 Surface hardness: Rebound (or Schmidt) hammer test
259(2)
23.2 Ultrasonic pulse velocity test
261(2)
23.3 Resonant frequency test
263(1)
23.4 Near-to-surface tests
264(2)
23.5 Other tests
266(1)
References
266(1)
24 Durability of concrete
267(30)
24.1 Transport mechanisms through concrete
267(3)
24.2 Measurements of flow constants for cement paste and concrete
270(6)
24.2.1 Permeability
270(3)
24.2.2 Diffusivity
273(1)
24.2.3 Sorptivity
274(2)
24.3 Degradation of concrete
276(12)
24.3.1 Attack by sulphates
276(3)
24.3.2 The thaumasite form of sulphate attack
279(1)
24.3.3 Sea water attack
280(1)
24.3.4 Acid attack
281(1)
24.3.5 Alkali-aggregate and alkali-silica reaction
281(4)
24.3.6 Frost attack: Freeze-thaw damage
285(2)
24.3.7 Fire resistance
287(1)
24.4 Durability of steel in concrete
288(7)
24.4.1 General principles of the corrosion of the steel in concrete
289(1)
24.4.2 Carbonation-induced corrosion
290(2)
24.4.3 Chloride-induced corrosion
292(3)
References
295(2)
25 Special concretes
297(10)
25.1 Lightweight aggregate concrete
297(1)
25.2 High-density aggregate concrete
298(1)
25.3 No-fines concrete
299(1)
25.4 Sprayed concrete
299(1)
25.5 High-strength concrete
300(1)
25.6 Flowing concrete
301(1)
25.7 Self-compacting concrete
302(1)
25.8 Underwater concrete
303(1)
25.9 Foamed concrete
304(1)
25.10 Aerated concrete
305(1)
References
305(2)
26 Recycling of concrete
307(3)
26.1 Recycling of fresh concrete
307(1)
26.2 Recycling of concrete after demolition
307(2)
References
309(1)
Example questions for Part III Concrete
310(2)
Further reading for Part III Concrete
312(7)
Part IV Polymers 319(18)
Vasileios Koutsos
27 Polymers: Types, properties and applications
321(13)
27.1 Polymeric materials
321(1)
27.1.1 Thermoplastic polymers
321(1)
27.1.2 Thermosetting polymers
321(1)
27.1.3 Foamed polymers
322(1)
27.2 Processing of thermoplastic polymers
322(2)
27.2.1 Profile production
323(1)
27.2.2 Film-blown plastic sheet
323(1)
27.2.3 Blow-moulded hollow plastic articles
323(1)
27.2.4 Co-extrusion items
323(1)
27.2.5 Highly orientated grid sheets
323(1)
27.3 Polymer properties
324(4)
27.3.1 Mechanical properties
324(1)
27.3.2 Time-dependent characteristics
324(4)
27.4 Applications and uses of polymers
328(4)
27.4.1 Sealants
328(1)
27.4.2 Adhesives
329(1)
27.4.3 Elastomers
330(1)
27.4.4 Geosynthetics
330(1)
27.4.4.1 Geotextiles
331(1)
27.4.4.2 Geomembranes
331(1)
27.4.4.3 Geo-linear elements
331(1)
27.4.4.4 Geogrids
332(1)
27.4.4.5 Geocomposites
332(1)
References
332(1)
Bibliography
332(2)
Example questions for Part IV Polymers
334(1)
Further reading for Part IV Polymers
335(2)
Part V Fibre composites 337(94)
Philip Purnell
28 Reinforcing fibre materials
341(10)
28.1 Glass fibres
341(3)
28.2 Carbon fibres
344(1)
28.3 Polymer fibres
345(1)
28.3.1 Aramid fibres
346(1)
28.4 Natural fibres
346(1)
28.5 Steel fibres
347(1)
28.6 Asbestos fibres
348(1)
References
349(2)
29 Reinforcing fibre architecture
351(8)
29.1 Volume fraction
351(1)
29.2 Reinforcement elements
352(1)
29.3 Reinforcement layouts
353(5)
29.3.1 Fibre length and the critical length
353(1)
29.3.2 Fibre orientation
354(1)
29.3.3 Efficiency factors
355(1)
29.3.4 Textile reinforcement
356(2)
References
358(1)
30 Matrices
359(2)
30.1 Fibre-reinforced polymer matrices
359(1)
30.2 Fibre-reinforced concrete matrices
359(1)
References
360(1)
31 Interfaces and bonding
361(4)
31.1 Interfaces and bonding in frp
361(1)
31.1.1 Coupling agents and surface treatments
361(1)
31.1.2 Bonding
362(1)
31.2 Interfaces and bonding in frc
362(2)
31.2.1 Interfacial morphology and properties
362(1)
31.2.2 Bonding
363(1)
References
364(1)
32 Mechanical behaviour and properties of composites
365(20)
32.1 Fundamental composite properties
365(3)
32.1.1 Longitudinal stiffness
365(1)
32.1.2 Transverse stiffness
366(1)
32.1.3 Intermediate behaviour, efficiency factors and composite strength
367(1)
32.2 Complex composite behaviour
368(1)
32.3 Laminate composite behaviour (frp)
369(1)
32.4 Brittle matrix composite theory (frc)
370(12)
32.4.1 Composite materials approach
371(1)
32.4.2 Critical fibre volume fraction
371(2)
32.4.3 Primary frc: ACK theory and multiple cracking
373(2)
32.4.4 Post-cracking behaviour
375(1)
32.4.5 Failure, post-peak behaviour and secondary frc
376(1)
32.4.6 Intermediate behaviour
377(1)
32.4.7 High modulus/high Vf behaviour
377(1)
32.4.8 Fracture mechanics approach
378(1)
32.4.9 Crack suppression
378(1)
32.4.10 Crack stabilisation
379(2)
32.4.11 Fibre/matrix debonding
381(1)
32.5 Typical mechanical properties
382(2)
References
384(1)
33 Manufacture of fibre composites
385(10)
33.1 Manufacture of frp for construction
385(4)
33.1.1 Manual processes for frp
385(2)
33.1.2 Semi-automated processes for frp
387(1)
33.1.3 Automated processes for frp
388(1)
33.2 Manufacture of frc
389(4)
33.2.1 Cast premix
389(1)
33.2.2 Sprayed premix
390(1)
33.2.3 Dual-spray systems
391(1)
33.2.4 Hand lay-up
391(1)
33.2.5 Automated systems
392(1)
References
393(2)
34 Applications of fibre composites in construction
395(18)
34.1 Applications for frp in construction
395(9)
34.1.1 Structural systems
395(2)
34.1.2 Rehabilitation systems
397(3)
34.1.3 Concrete column confinement
400(1)
34.1.4 Internal concrete reinforcement
401(1)
34.1.5 Hybrid systems
402(1)
34.1.6 Bridge enclosures
403(1)
34.2 Applications for frc in construction
404(6)
34.2.1 Architectural cladding: Glass-frc
404(1)
34.2.2 Tunnel linings: Steel-frc and polymer-frc
405(2)
34.2.3 Industrial flooring: Steel-frc and polymer-frc
407(2)
34.2.4 Sheet materials for building: Natural-frc
409(1)
34.2.5 Permanent formwork: Glass-frc
409(1)
References
410(3)
35 Durability
413(12)
35.1 Durability of frp
414(3)
35.1.1 Moisture and solutions
414(1)
35.1.2 Temperature effects
414(1)
35.1.3 Ultraviolet radiation
415(1)
35.1.4 Fatigue
415(1)
35.1.5 Creep
415(1)
35.1.6 Bond durability in strengthening systems
416(1)
35.1.7 Durability of frp rebars
416(1)
35.1.8 Material degradation models for frp
416(1)
35.2 Durability of frc
417(6)
35.2.1 Multifilamentlmicrofibre frc
417(1)
35.2.2 Monofilamentlmacrofibre frc
418(1)
35.2.3 Property loss mechanisms
419(1)
35.2.4 Fibre weakening
419(1)
35.2.5 Continued matrix hydration
419(3)
35.2.6 Designing durable frc
422(1)
35.2.7 Modelling and service life prediction
422(1)
References
423(2)
36 Recycling
425(2)
36.1 Recycling of frp
425(1)
36.2 Recycling of frc
426(1)
References
426(1)
Example questions for Part V Composites
427(2)
Further reading for Part V Composites
429(2)
Part VI Glass 431(34)
Graham Dodd
37 Manufacture and processing
433(14)
37.1 Manufacturing of flat glass
433(3)
37.1.1 Glassmaking materials
433(1)
37.1.2 Composition
433(1)
37.1.3 Constituents and microstructure of glass
434(1)
37.1.4 Historical processes
434(1)
37.1.5 Rolled glass (including wired and polished wired)
435(1)
37.1.6 Float glass
435(1)
37.1.7 Fusion-draw process
436(1)
37.2 Coatings
436(2)
37.2.1 Low emissivity
437(1)
37.2.2 Solar control
437(1)
37.2.3 Selective, high performance
437(1)
37.2.4 Self-cleaning
437(1)
37.3 Strengthening processes
438(2)
37.3.1 Toughening (tempering) and the heat soak test
438(1)
37.3.2 Heat strengthening
439(1)
37.3.3 Chemical strengthening
440(1)
37.4 Forming processes
440(1)
37.4.1 Bending
440(1)
37.4.2 Bending and tempering
440(1)
37.4.3 Channel glass
441(1)
37.5 Decoration processes
441(1)
37.5.1 Sand blasting
441(1)
37.5.2 Acid etching
441(1)
37.5.3 Fritting
442(1)
37.5.4 Stained glass
442(1)
37.5.5 Printing
442(1)
37.6 Laminciting
442(2)
37.7 Insulating unit manufacture
444(1)
37.8 Fire-resisting glasses
445(1)
References
446(1)
38 Properties and performance
447(6)
38.1 Physical properties
447(1)
38.2 Mechanical properties
447(4)
38.2.1 Patterns of breakage
447(1)
38.2.2 Strength of glass
447(3)
38.2.3 Static fatigue
450(1)
38.2.4 Post-breakage characteristics of laminated glass combinations
450(1)
38.2.4.1 Annealed/annealed
450(1)
38.2.4.2 Heat strengthened/heat strengthened
451(1)
38.2.4.3 Toughened/toughened
451(1)
38.2.4.4 Toughened/heat strengthened
451(1)
Reference
451(2)
39 Design and applications
453(6)
39.1 Design of glazing and selection of glass type
453(1)
39.2 Deflection limits for glazing
453(1)
39.2.1 Deflection criteria
453(1)
39.2.2 Guidance from standards
454(1)
39.3 Design stresses and load factors
454(1)
39.3.1 Strength of laminated glass
454(1)
39.4 Windows
455(1)
39.4.1 Design of insulating units
455(1)
39.5 Glass walls and structural glass assemblies
456(1)
39.6 Skylights
456(1)
39.7 Floors and stairs
456(1)
39.8 Glazing for security
456(1)
References
457(2)
40 Service and end of life
459(3)
40.1 Durability
459(1)
40.1.1 Cleaning
459(1)
40.1.2 Protection on site
459(1)
40.1.3 Failure of double-glazed units
460(1)
40.1.4 Delamination of laminated glass
460(1)
40.2 What to do if glass breaks
460(1)
40.3 Disposal and recycling
460(1)
References
461(1)
Example questions for Part VI Glass
462(1)
Further reading for Part VI Glass
463(2)
Part VII Timber 465(148)
John M. Dinwoodie
41 Structure of timber and the presence of moisture
469(42)
41.1 Structure at the macroscopic level
469(2)
41.2 Structure at the microscopic level
471(6)
41.3 Molecular structure and ultrastructure
477(9)
41.3.1 Chemical constituents
477(1)
41.3.1.1 Cellulose
477(1)
41.3.1.2 Hemicelluloses and lignin
480(1)
41.3.1.3 Extractives
481(1)
41.3.1.4 Minerals
481(1)
41.3.1.5 Acidity
481(1)
41.3.2 The cell wall as a fibre composite
482(1)
41.3.3 Cell wall layers
483(3)
41.4 Variability in structure
486(1)
41.5 Appearance of timber in relation to its structure
487(4)
41.5.1 Texture
487(1)
41.5.2 Figure
487(1)
41.5.2.1 Grain
488(1)
41.5.2.2 Growth rings
489(1)
41.5.2.3 Rays
489(1)
41.5.2.4 Knots
489(1)
41.5.3 Colour
490(1)
41.6 Mass-volume relationships
491(3)
41.6.1 Density
491(1)
41.6.2 Specific gravity
492(2)
41.6.3 Density of the dry cell wall
494(1)
41.6.4 Porosity
494(1)
41.7 Moisture in timber
494(5)
41.7.1 Equilibrium moisture content
494(1)
41.7.2 Determination of moisture content
495(1)
41.7.3 The moisture content of green timber
496(1)
41.7.4 Removal of moisture from timber
497(1)
41.7.5 Influence of structure
497(1)
41.7.6 Fibre saturation point
498(1)
41.7.7 Sorption
499(1)
41.8 Flow in timber
499(9)
41.8.1 Bulk flow and permeability
501(1)
41.8.1.1 Flow of fluids
501(1)
41.8.1.2 Flow paths in timber
502(1)
41.8.1.3 Timber and the laws of flow
505(1)
41.8.2 Moisture diffusion
506(1)
41.8.3 Thermal conductivity
507(1)
References
508(3)
42 Deformation in timber
511(32)
42.1 Introduction
511(1)
42.2 Dimensional change due to moisture
511(4)
42.2.1 Shrinkage
511(1)
42.2.1.1 Anisotropy in shrinkage
511(1)
42.2.1.2 Practical significance
513(1)
42.2.2 Movement
513(2)
42.3 Thermal movement
515(1)
42.4 Deformation under load
516(23)
42.4.1 Elastic deformation
517(1)
42.4.1.1 Orthotropic elasticity and timber
520(1)
42.4.1.2 Factors influencing the elastic modulus
520(6)
42.4.2 Viscoelastic deformation
526(1)
42.4.2.1 Creep
527(12)
References
539(4)
43 Strength and failure in timber
543(30)
43.1 Introduction
543(1)
43.2 Determination of strength
543(1)
43.2.1 Test piece size and selection
543(1)
43.2.1.1 Use of small clear test pieces
544(1)
43.2.1.2 Use of structural-size test pieces
544(1)
43.2.2 Standardised test procedures
544(1)
43.3 Strength values
544(3)
43.3.1 Derived using small clear test pieces
544(2)
43.3.2 Derived using structural-size test pieces
546(1)
43.4 Variability in strength values
547(1)
43.5 Inter-relationships among the strength properties
548(1)
43.5.1 Modulus of rupture (bending strength) and modulus of elasticity
548(1)
43.5.2 Impact bending and total work
548(1)
43.5.3 Hardness and compression perpendicular to the grain
548(1)
43.6 Factors affecting strength
548(11)
43.6.1 Anisotropy and grain angle
549(1)
43.6.2 Knots
550(1)
43.6.3 Density
550(1)
43.6.4 Ring width
551(1)
43.6.5 Ratio of latewood to earlywood
552(1)
43.6.6 Cell length
553(1)
43.6.7 Micro fibrillar angle
553(1)
43.6.8 Chemical composition
553(1)
43.6.9 Reaction wood
554(1)
43.6.9.1 Compression wood
554(1)
43.6.9.2 Tension wood
554(1)
43.6.10 Moisture content
554(1)
43.6.11 Temperature
555(1)
43.6.12 Time
556(1)
43.6.12.1 Rate of loading
557(1)
43.6.12.2 Duration of load
557(2)
43.7 Strength, toughness, failure and fracture morphology
559(8)
43.7.1 Classical approach
559(1)
43.7.1.1 Tensile strength parallel to the grain
559(1)
43.7.1.2 Compression strength parallel to the grain
562(1)
43.7.1.3 Static bending
564(1)
43.7.1.4 Toughness
564(1)
43.7.1.5 Fatigue
565(2)
43.7.2 Engineering approach to strength and fracture
567(1)
43.8 Structural design in timber
567(3)
43.8.1 Visual grading
567(1)
43.8.2 Machine grading
568(1)
43.8.3 Strength classes
568(1)
43.8.4 Structural design
568(2)
References
570(3)
44 Durability of timber
573(12)
44.1 Introduction
573(1)
44.2 Chemical, physical and mechanical agencies affecting durability and causing degradation
573(2)
44.2.1 Photochemical degradation
573(1)
44.2.2 Chemical degradation
574(1)
44.2.3 Thermal degradation
574(1)
44.2.4 Mechanical degradation
574(1)
44.3 Natural durability and attack by fungi and insects
575(4)
44.3.1 Natural durability
575(2)
44.3.2 Nature of fungal decay
577(1)
44.3.3 Nature of insect attack
578(1)
44.3.4 Marine borers
579(1)
44.4 Performance of timber in fire
579(4)
44.4.1 Methods of assessing reaction to fire of constructional materials
581(1)
44.4.1.1 The U.K. position
582(1)
44.4.1.2 The use of national and CEN standards
582(1)
References
583(2)
45 Processing and recycling of timber
585(24)
45.1 Introduction
585(1)
45.2 Mechanical processing
585(12)
45.2.1 Solid timber
585(1)
45.2.1.1 Sawing and planing
585(1)
45.2.1.2 Steam bending
587(1)
45.2.2 Wood-based panels (board materials)
587(1)
45.2.2.1 Plywood
588(1)
45.2.2.2 Particleboard (chipboard)
590(1)
45.2.2.3 MDF (dry-process fibreboard)
591(1)
45.2.2.4 Wet-process fibreboard
591(1)
45.2.2.5 OSB (oriented strand board)
592(1)
45.2.2.6 CBPB (cement bonded particleboard)
592(1)
45.2.2.7 Comparative performance of the wood-based boards
592(1)
45.2.3 Laminated timber
593(2)
45.2.4 Engineered structural lumber
595(1)
45.2.5 Mechanical pulping
595(1)
45.2.6 Recycling of timber waste
596(1)
45.2.6.1 Case study1
597(1)
45.2.6.2 Case study 2
597(1)
45.2.6.3 Case study 3
597(1)
45.3 Chemical processing
597(7)
45.3.1 Treatability
597(1)
45.3.1.1 Preservatives and preservation
598(1)
45.3.1.2 Flame retardants
600(1)
45.3.1.3 Dimensional stabilisers and durability enhancers
601(1)
45.3.2 Chemical pulping
602(1)
45.3.3 Other chemical processes
603(1)
45.4 Thermal processing
604(1)
45.5 Finishes
604(3)
45.5.1 Flame-retardant coatings
606(1)
References
607(2)
Example questions for Part VII Timber
609(1)
Further reading for Part VII Timber
610(3)
Part VIII Masonry: Brickwork, blockwork and stonework 613(86)
Paulo B. Loureko
46 Materials and components for masonry
617(26)
46.1 Basic terminology
617(2)
46.2 Materials used for manufacture of units and mortars
619(4)
46.2.1 Rocks, sand and fillers
619(1)
46.2.1.1 Rock (or stone)
619(1)
46.2.1.2 Sand: Nature and composition
619(1)
46.2.1.3 Mortar and rendering sands
619(1)
46.2.1.4 Fly ash (pulverised fuel ash)
620(1)
46.2.1.5 Chalk (CaCO3)
620(1)
46.2.2 Clays
620(1)
46.2.3 Lightweight aggregates
621(1)
46.2.4 Binders
622(1)
46.2.4.1 Cement
622(1)
46.2.4.2 Masonry cement
622(1)
46.2.4.3 Lime and hydraulic lime
622(1)
46.2.4.4 Calcium silicate
623(1)
46.3 Other constituents and additives
623(1)
46.3.1 Organic plasticisers
623(1)
46.3.2 Latex additives
623(1)
46.3.3 Pigments
624(1)
46.3.4 Retarders
624(1)
46.3.5 Accelerators
624(1)
46.4 Mortar
624(4)
46.4.1 Properties of freshly mixed (onset) mortar
625(1)
46.4.2 Properties of hardened mortar
626(2)
46.4.3 Thin-bed and lightweight mortars
628(1)
46.5 Fired clay bricks and blocks
628(7)
46.5.1 Forming and firing
628(1)
46.5.1.1 Soft mud process
628(1)
46.5.1.2 Stiff plastic process
629(1)
46.5.1.3 Wirecut process
629(1)
46.5.1.4 Semi-dry pressing
630(1)
46.5.1.5 Drying and firing in Hoffman kilns
630(1)
46.5.1.6 Drying and firing in tunnel kilns
631(1)
46.5.1.7 Clamps
632(1)
46.5.1.8 Intermittent kilns
632(1)
46.5.2 Properties
632(3)
46.6 Calcium silicate units
635(1)
46.7 Concrete and manufactured stone units
635(3)
46.7.1 Production processes for concrete units
636(1)
46.7.1.1 Casting concrete
636(1)
46.7.1.2 Pressing of concrete
636(1)
46.7.1.3 Curing
636(1)
46.7.2 Concrete products
637(1)
46.7.2.1 Dense aggregate concrete blocks and concrete bricks
637(1)
46.7.2.2 Manufactured stone masonry units
637(1)
46.7.2.3 Lightweight aggregate concrete blocks
638(1)
46.8 Aircrete (AAC)
638(2)
46.8.1 Manufacturing process
639(1)
46.8.2 Properties
639(1)
46.9 Natural stone units
640(1)
46.10 Ancillary devices
640(1)
References
641(2)
47 Masonry construction and forms
643(8)
47.1 Walls and other masonry forms
643(2)
47.2 Bond patterns
645(2)
47.3 Use of specials
647(2)
47.4 Joint style
649(1)
47.5 Workmanship and accuracy
649(1)
47.6 Buildability, site efficiency and productivity
649(1)
47.7 Appearance
650(1)
References
650(1)
48 Structural behaviour and movement of masonry
651(18)
48.1 General considerations
651(2)
48.2 Compressive loading
653(5)
48.2.1 Axial loads
653(3)
48.2.2 Stability: Slender structures and eccentricity
656(1)
48.2.3 Concentrated load
657(1)
48.2.4 Cavity walls in compression
658(1)
48.3 Shear loading
658(2)
48.4 Flexure (bending)
660(3)
48.5 Tension
663(1)
48.6 Elastic modulus
664(1)
48.7 Building (seismic) behaviour
665(1)
48.8 Movement and creep
666(1)
References
667(2)
49 Non-structural physical properties of masonry
669(6)
49.1 Thermal performance
669(2)
49.2 Resistance to damp and rain penetration
671(1)
49.3 Moisture vapour permeability
672(1)
49.4 Sound transmission
673(1)
49.5 Fire resistance
673(1)
References
674(1)
50 Deterioration, conservation and strengthening of masonry
675(16)
50.1 Chemical attack
675(3)
50.1.1 Water and acid rain
675(2)
50.1.2 Carbonation
677(1)
50.1.3 Sulphate attack
677(1)
50.1.4 Acids
678(1)
50.1.5 Chlorides
678(1)
50.1.6 Corrosion of embedded metals
678(1)
50.2 Erosion
678(3)
50.2.1 Freeze-thaw attack
679(1)
50.2.2 Crypto-efflorescence (sub-florescence) damage
680(1)
50.2.3 Abrasion
680(1)
50.3 Stress effects
681(1)
50.4 Staining
681(2)
50.4.1 Efflorescence
681(1)
50.4.2 Lime staining
682(1)
50.4.3 Iron staining
682(1)
50.4.4 Biological staining
682(1)
50.5 Conservation of masonry
683(4)
50.5.1 Principles
683(1)
50.5.2 Replacement materials: Stone
684(1)
50.5.3 Replacement materials: Clay bricks, terracotta ware, concrete and calcium silicate units
685(1)
50.5.4 Replacement materials: Mortars
685(1)
50.5.5 Selection of replacement materials
686(1)
50.5.6 Repair methods
686(1)
50.5.7 Cleaning of masonry
686(1)
50.6 Strengthening of masonry
687(2)
50.6.1 Strengthening of structural elements
687(1)
50.6.2 Upgrading of connections
688(1)
50.6.3 Improvement of the global building behaviour
688(1)
References
689(2)
Example questions for Part VIII Masonry: Brickwork, blockwork and stonework
691(1)
Further reading for Part VIII Masonry: Brickwork, blockwork and stonework
692(7)
Part IX Bituminous materials 699(60)
Gordon D. Airey
51 Components of bituminous materials
703(10)
51.1 Constituents of bituminous materials
703(1)
51.2 Bitumen
703(3)
51.2.1 Sources
703(1)
51.2.1.1 Natural asphalts
703(1)
51.2.1.2 Refinery bitumen
704(1)
51.2.2 Manufacture
704(1)
51.2.3 Chemistry and molecular structure
704(1)
51.2.4 Physical and rheological properties
705(1)
51.3 Types of bitumen
706(3)
51.3.1 Penetration grade bitumens
706(1)
51.3.2 Oxidised bitumens
706(1)
51.3.3 Cutbacks
706(1)
51.3.4 Emulsions
707(2)
51.3.5 Polymer-modified bitumens
709(1)
51.4 Aggregates
709(2)
51.4.1 Properties
709(2)
References
711(2)
52 Viscosity, stiffness and deformation of bituminous materials
713(10)
52.1 Viscosity and rheology of binders
713(1)
52.2 Empirical measurements of viscosity
713(2)
52.3 Measurement of viscosity
715(1)
52.4 Influence of temperature on viscosity
716(2)
52.5 Resistance of bitumens to deformation
718(1)
52.6 Determination of permanent deformation
719(1)
52.7 Factors affecting permanent deformation
720(1)
52.7.1 Bitumen viscosity
720(1)
52.7.2 Aggregate
720(1)
52.7.3 Temperature
720(1)
References
721(2)
53 Strength and failure of bituminous materials
723(8)
53.1 The road structure
723(1)
53.2 Modes of failure in a bituminous structure
723(2)
53.3 Fatigue characteristics
725(4)
53.3.1 Stress and strain conditions
726(1)
53.3.2 The strain criteria
727(1)
53.3.3 Effect of mixture variables
728(1)
References
729(2)
54 Durability of bituminous mixtures
731(10)
54.1 Ageing of bitumen
731(2)
54.1.1 Oxidation
731(1)
54.1.2 Loss of volatiles
731(1)
54.1.3 Ageing index
732(1)
54.1.4 Bitumen ageing tests
732(1)
54.2 Permeability
733(2)
54.2.1 Measurement and voids analysis
734(1)
54.2.2 Factors affecting permeability
734(1)
54.3 Adhesion
735(5)
54.3.1 The nature of the aggregate
735(1)
54.3.2 The nature of the bitumen
736(1)
54.3.3 Mechanisms for loss of adhesion
736(1)
54.3.3.1 Displacement
736(1)
54.3.3.2 Detachment
737(1)
54.3.3.3 Film rupture
738(1)
54.3.3.4 Blistering and pitting
739(1)
54.3.3.5 Spontaneous emulsification
739(1)
54.3.3.6 Hydraulic scouring
739(1)
54.3.3.7 Pore pressure
740(1)
References
740(1)
55 Design and production of bituminous materials
741(8)
55.1 Bituminous mixtures
741(3)
55.1.1 Asphalt concretes
741(1)
55.1.2 Hot rolled asphalts
741(1)
55.1.3 Porous asphalt
742(1)
55.1.4 Stone mastic asphalt
743(1)
55.2 Recipe and designed mixtures
744(2)
55.3 Methods of production
746(2)
References
748(1)
56 Recycling of bituminous materials
749(6)
56.1 In-plant asphalt recycling
749(2)
56.1.1 Hot in-plant operations
750(1)
56.1.2 Cold in-plant processes
751(1)
56.2 In situ asphalt recycling
751(2)
56.2.1 Hot in situ asphalt recycling
751(1)
56.2.1.1 Repave
751(1)
56.2.1.2 Remix
751(1)
56.2.2 Cold in situ processes
752(1)
56.3 Issues related to asphalt recycling
753(1)
56.3.1 Black rock
753(1)
56.3.2 Material variability
753(1)
References
753(2)
Example questions for Part IX Bituminous materials
755(1)
Further reading for Part IX Bituminous materials
756(3)
Part X Selection and sustainable use of construction materials 759(30)
Marios Soutsos
Peter Domone
57 Mechanical properties of materials
761(6)
57.1 Ranges of properties
761(3)
57.2 Specific stiffness and specific strength
764(1)
Reference
765(2)
58 Sustainability and construction materials
767(22)
58.1 Global considerations
767(3)
58.2 Sustainability and the construction industry
770(5)
58.2.1 Use of materials
770(1)
58.2.2 Life-cycle assessment
771(2)
58.2.3 The green hierarchy
773(2)
58.3 Steel
775(1)
58.4 Aggregates
776(1)
58.5 Cement and concrete
777(5)
58.5.1 Cement
777(3)
58.5.2 Aggregates for concrete
780(1)
58.5.3 Concrete
781(1)
58.6 Asphalt and bituminous materials
782(1)
58.7 Masonry
782(1)
58.8 Glass
783(1)
58.9 Polymers and fibre composites
783(1)
58.10 Timber
784(1)
References
785(2)
Further reading
787(2)
Index 789
Marios Soutsos is a professor of Structures/Materials at Queen's University Belfast. Peter Domone is an honorary senior lecturer at University College London.