Dynamical Ionosphere: A Systems Approach to Ionospheric Irregularity [Minkštas viršelis]

Edited by , Edited by (Researcher, National Research Council, Italy), Edited by (Assistant Director and Principal Research Scientist, MIT Haystack Observatory, MA, USA-;), Edited by (Research Fellow, Department of Electronic and Electrical Engineering, University of Bath, UK)
  • Formatas: Paperback / softback, 337 pages, aukštis x plotis: 235x191 mm
  • Išleidimo metai: 13-Dec-2019
  • Leidėjas: Elsevier Science Publishing Co Inc
  • ISBN-10: 0128147822
  • ISBN-13: 9780128147825
Kitos knygos pagal šią temą:
  • Formatas: Paperback / softback, 337 pages, aukštis x plotis: 235x191 mm
  • Išleidimo metai: 13-Dec-2019
  • Leidėjas: Elsevier Science Publishing Co Inc
  • ISBN-10: 0128147822
  • ISBN-13: 9780128147825
Kitos knygos pagal šią temą:
The Dynamical Ionosphere: A Systems Approach to Ionospheric Irregularity examines the Earth's ionosphere as a dynamical system with signatures of complexity. The system is robust in its overall configuration, with smooth space-time patterns of daily, seasonal and Solar Cycle variability, but shows a hierarchy of interactions among its sub-systems, yielding apparent unpredictability, space-time irregularity, and turbulence. This interplay leads to the need for constructing realistic models of the average ionosphere, incorporating the increasing knowledge and predictability of high variability components, and for addressing the difficulty of dealing with the worst cases of ionospheric disturbances, all of which are addressed in this interdisciplinary book. Borrowing tools and techniques from classical and stochastic dynamics, information theory, signal processing, fluid dynamics and turbulence science, The Dynamical Ionosphere presents the state-of-the-art in dealing with irregularity, forecasting ionospheric threats, and theoretical interpretation of various ionospheric configurations.
The Earth's Ionosphere, An Overview
1. Introduction
2. Day-to-day Variability of the Ionosphere
3. Ionospheric Conjugate Point Science: Hemispheric Coupling
4. Status and Future Directions
5. Mid-Latitude Ionospheric Features: Natural Complexity In Action
6. Empirical Ionospheric Models
7. Wrap Up Global Complexity
8. Complex Dynamics of the Sun-Earth Interaction
9. Storms and Sub-storms
10. Geomagnetically Induced Currents Local Irregularities
11. From instabilities to irregularities
12. Equatorial F region Irregularities
13. Scintillation Theory The Future Era of Ionospheric Science
14. The Complex Ionosphere
15. New high resolution techniques to probe the ionosphere
16. Advanced Statistical Tools in Near-Earth Space Science
17. Ionospheric Science in the age of Big Data
18. Scintillation Modeling
19. Multiscale Analysis of the Turbulent Ionospheric Medium
20. The future Ionospheric Physics
Massimo Materassi received his PhD in theoretical physics, and served his post-doc in near-Earth plasma turbulence. He is now a researcher for the National Research Council in Italy. His research interests include space weather dynamics, turbulence, information analysis, theoretical dynamical models, plasma physics, and dissipative processes. Biagio Forte is a Research Fellow for the Department of Electronic and Electrical Engineering at the University of Bath. His research interests include physics and chemistry of the upper ionised atmosphere, plasma turbulence and instabilities in magnetized plasmas, trans-ionospheric radio waves propagation, radio wave scintillation (ionospheric and interplanetary), radio occultation, and space weather effect mitigation. Anthea J. Coster is Assistant Director and Principal Research Scientist at MIT's Haystack Observatory, which collaborates with faculty and staff in various departments and laboratories at MIT and includes a 37-meter radio telescope for observation. Her research interests include physics of the ionosphere, magnetosphere, and thermosphere, GPS positioning and measurement accuracy, space weather and storm time effects, and magnetosphere and ionosphere coupling. Susan Skone is Associate Professor of Geomatics Engineering at the University of Calgary. Dr. Skone's research focuses on Global Navigation Satellite Systems (GNSS). Specific interests include ionosphere modeling for wide area differential GPS applications, scintillation monitoring for GPS, and water vapour estimation for GPS meteorology. Dr. Skone is also involved in several national and international working groups, and is active in Women in Science and Engineering activities at the University of Calgary.