Introduction to Helicopter and Tiltrotor Flight Simulation 2nd edition [Kietas viršelis]

  • Formatas: Hardback
  • Serija: AIAA Education Series
  • Išleidimo metai: 27-Sep-2018
  • Leidėjas: American Institute of Aeronautics & Astronautics
  • ISBN-10: 1624105130
  • ISBN-13: 9781624105135
Kitos knygos pagal šią temą:
  • Formatas: Hardback
  • Serija: AIAA Education Series
  • Išleidimo metai: 27-Sep-2018
  • Leidėjas: American Institute of Aeronautics & Astronautics
  • ISBN-10: 1624105130
  • ISBN-13: 9781624105135
Kitos knygos pagal šią temą:
Introduction to Helicopter and Tiltrotor Flight Simulation, Second Edition brings the tools required to write a flight simulation mathematical model together in one comprehensive reference. Twenty-two chapters comprise the main body of the text. Each chapter builds on the lessons of the previous chapter and lays the foundation for the chapter. The appendices supply the building material. Dedicated chapters on the aerodynamics and dynamics of fuselages, wings, propellers, rotors, landing gear, engines, drive trains, controls, and aerodynamic interference precede the final chapters on overall organization, information flow, and trimming methods. Fourteen appendices provide important reviews of numerical and analytical techniques in the calculus, linear algebra, rotor basics, Biot-Savart law, momentum theory, units, and humorous axioms about flight. The text supports the lessons with many examples, 400 illustrations, a problem set, and a series of over 40 demonstration programs that bring the equations to life. The text can be used for senior-level and graduate-level instruction and as a reference for the practicing engineer. The text presents the material in an accessible, fun, and easy-to-understand style.
Foreword to the Second Edition xvii
Foreword to the First Edition xix
Acknowledgments xxiii
Chapter 1 Introduction to the Flight Simulation of Helicopters and Tiltrotors 1(18)
1.1 Introduction
1(8)
1.2 Elements of a Performance Simulation
9(2)
1.3 Vocabulary of a Performance Simulation
11(4)
1.4 Component Models
15(1)
1.5 Be Open to These Concerns
16(1)
References
17(1)
Problems
17(2)
Chapter 2 Vectors and Vector Resolution 19(12)
2.1 Introduction
19(1)
2.2 Vectors That Specify Magnitude and Direction
19(1)
2.3 Defining a Vector: Notation
20(2)
2.4 Orienting a Vector
22(3)
2.5 Operations
25(1)
2.6 Example
26(2)
2.7 Conclusions
28(1)
Problems
28(3)
Chapter 3 Axis Systems 31(10)
3.1 Introduction
31(1)
3.2 Axis Systems Used in Simulation
31(3)
3.3 Euler Angles
34(2)
3.4 Individual Element Local Axes (IELAs)
36(1)
3.5 Individual Element Reference Axes (IERAs)
36(2)
3.6 Example
38(1)
3.7 Conclusions
38(1)
Problems
39(2)
Chapter 4 Kinematics and Flight Dynamics 41(30)
4.1 Introduction
41(1)
4.2 Euler Angles
41(3)
4.3 Euler Rates
44(2)
4.4 Quaternions
46(2)
4.5 Differentiation in a Moving Axis System
48(2)
4.6 Mass Properties
50(2)
4.7 Equations of Motion: Linear Motion
52(1)
4.8 Equations of Motion: Angular Motion
53(2)
4.9 Applied Forces and Moments
55(6)
4.10 Static versus Dynamic
61(1)
4.11 Overall States of an Aircraft
61(1)
4.12 Longitudinal Equations of Motion
62(3)
4.13 Lateral Equations of Motion
65(3)
4.14 Conclusions
68(1)
References
68(1)
Problems
68(3)
Chapter 5 Atmosphere 71(18)
5.1 Introduction
71(1)
5.2 Static Properties of Air: Standard Day Definition
71(6)
5.3 Bernoulli's Equation
77(3)
5.4 Viscosity
80(3)
5.5 Home Experiments
83(1)
5.6 Compressibility
84(2)
5.7 MATLAB Executables
86(1)
5.8 Conclusions
87(1)
References
87(1)
Problems
88(1)
Chapter 6 How High, How Fast, How Far 89(6)
6.1 Introduction
89(1)
6.2 How High?
89(2)
6.3 How Fast?
91(1)
6.4 How Far?
92(1)
6.5 Conclusion
93(1)
References
94(1)
Problems
94(1)
Chapter 7 Aerodynamic Velocity, Inertial Velocity, Wash Velocity, and Gusts 95(8)
7.1 Introduction
95(1)
7.2 Inertial Velocity
95(1)
7.3 Wash Velocity
96(1)
7.4 Gust/Wind Velocity
97(1)
7.5 Aerodynamic Velocity
97(1)
7.6 Why Are These Distinctions Important?
97(1)
7.7 Dynamic Pressure
98(1)
7.8 Angles of Attack and Sideslip
98(2)
7.9 Conclusions
100(1)
Problems
100(3)
Chapter 8 Aerodynamics of Arbitrary Shapes 103(12)
8.1 Introduction
103(1)
8.2 Basic Geometry: Fuselages
103(3)
8.3 Reference System
106(5)
8.4 Building the Force and Moment Equations
111(1)
8.5 Conclusions
112(1)
References
112(1)
Problems
113(2)
Chapter 9 Aerodynamics of Airfoils, Wings, and Fins 115(52)
9.1 Introduction
115(1)
9.2 Basic Geometry: Airfoils
116(16)
9.3 Basic Geometry: Wings
132(32)
9.4 Supporting Material
164(1)
9.5 Conclusions
164(1)
References
164(1)
Problems
165(2)
Chapter 10 Aerodynamics of Propellers 167(22)
10.1 Introduction
167(1)
10.2 Momentum Theory
167(2)
10.3 Momentum Theory Expanded for Disk Plane Angle of Attack and Rate of Descent
169(3)
10.4 Propeller Analysis
172(7)
10.5 Simplified Performance Estimation
179(3)
10.6 Results of a Simple Analysis
182(4)
10.7 Conclusions
186(1)
References
186(1)
Problems
186(3)
Chapter 11 Rotor Dynamic Modeling 189(36)
11.1 Introduction
189(2)
11.2 Basic Rotor Geometry
191(1)
11.3 Full Span Blade
192(2)
11.4 Hub Types
194(5)
11.5 Simplified Dynamics of a Full-Span Rotor
199(7)
11.6 The Flapping Equation: Inertial Contribution
206(2)
11.7 Hub Restraints and Their Influence on Flapping
208(6)
11.8 Undersling
214(3)
11.9 Hub Forces and Moments
217(4)
11.10 Tennis Racquet Moment
221(2)
17.11 Conclusions
223(1)
References
223(1)
Problems
223(2)
Chapter 12 Rotor Aerodynamic Modeling 225(38)
12.7 Introduction
225(1)
12.2 Basic Wind Geometry
225(3)
12.3 Simplified Aerodynamic Model of a Full-Span Rotor
228(7)
12.4 The Flapping Equation
235(8)
12.5 Hub Forces and Moments
243(4)
12.6 Spin Direction
247(1)
12.7 Tip Loss Factor
247(1)
12.8 Summary of Quasi-Static Closed-Form Method
248(3)
12.9 Quasi-Static Rotor (QSR) Model
251(9)
12.10 Conclusions
260(1)
References
261(1)
Problems
261(2)
Chapter 13 Rotor Downwash Modeling 263(38)
13.1 Introduction
263(1)
13.2 Why Do We Study Downwash?
263(4)
13.3 Wash Models
267(7)
13.4 Glauert Momentum Theory: Nonuniform Distribution Due to Local Blade Loading
274(9)
13.5 Dynamic Inflow Models
283(4)
13.6 Vortex Theory Methods
287(9)
13.7 Other Methods
296(1)
73.8 Summary
296(1)
13.9 Conclusions
297(1)
References
298(1)
Problems
299(2)
Chapter 14 Rotor Special Interest Modeling 301(20)
14.1 Introduction
301(1)
14.2 Figure of Merit
301(4)
14.3 Autorotation Index and Hold-Off Time
305(5)
14.4 Autorotation and Rotor Droop
310(2)
14.5 Vortex Ring State, Vortex Ring Event
312(1)
14.6 Ground Effect
313(2)
14.7 Coaxial Rotor Interference
315(3)
14.8 Simple Blade Element Rotor (BER) Program
318(1)
14.9 Conclusions
318(1)
References
319(1)
Problems
319(2)
Chapter 15 Introduction to Aeroelastic Rotor Models 321(26)
15.1 Introduction
321(1)
15.2 Blade Element Aeroelastic Rotor (BEAR) Modeling
321(21)
15.3 Simple Blade Element Rotor (BER) Program
342(1)
15.4 Blade Shape Generators
343(1)
15.5 Conclusions
344(1)
References
344(1)
Problems
344(3)
Chapter 16 Aerodynamic Interference 347(24)
16.1 Introduction
347(1)
16.2 Self-Induced Interference
348(1)
16.3 Basic Wash Model
349(8)
16.4 Mutual Interference
357(9)
16.5 Linking the Wakes
366(4)
16.6 Conclusions
370(1)
References
370(1)
Problem
370(1)
Chapter 17 Engines 371(16)
17.1 Introduction
371(1)
17.2 Fundamental Test Bed Architecture
372(1)
17.3 Simple Rotor Model
373(1)
17.4 Simplest Engine Representation
373(1)
17.5 Rubber Engine
374(1)
17.6 Time Constant Models
375(3)
17.7 Thermodynamic Models
378(7)
17.8 Conclusions
385(1)
References
385(1)
Problems
386(1)
Chapter 18 Drive Trains 387(24)
18.1 Introduction
387(1)
18.2 Fundamental Architecture
387(2)
18.3 Building Blocks
389(3)
18.4 Model Construction with Building Blocks
392(10)
18.5 Model Construction with Information Flow Diagram
402(3)
18.6 Other Sanity Checks
405(4)
18.7 Conclusion
409(1)
References
410(1)
Problems
410(1)
Chapter 19 Controls 411(20)
19.1 Introduction
411(1)
19.2 Fundamental Rigging Issues
411(12)
19.3 Basic Control Diagram
423(1)
19.4 Stability and Control Augmentation Systems (SCAS)
424(5)
19.5 Envelope Adherence
429(1)
19.6 Conclusions
429(1)
References
430(1)
Problems
430(1)
Chapter 20 Landing Gear 431(42)
20.1 Introduction
431(1)
20.2 Illustrative Linear Model
432(12)
20.3 Strut Models
444(10)
20.4 Wheel and Tire Model
454(6)
20.5 Special Problems
460(9)
20.6 Conclusions
469(1)
References
469(1)
Problems
469(4)
Chapter 21 Trimming 473(30)
21.1 Introduction
473(2)
21.2 Trim Requirements and Options
475(1)
21.3 Organizing the Trim Problem
476(1)
21.4 Specifying the Trim Problem
476(3)
21.5 Selecting a Trim Method
479(14)
21.6 Two Special Trim Problems
493(2)
21.7 Aircraft Trim Problem
495(4)
21.8 Blade Element Rotor Trim Problem
499(1)
21.9 Conclusions
500(1)
References
500(1)
Problems
500(3)
Chapter 22 Assembly 503(32)
22.1 Introduction
503(1)
22.2 Structure
504(6)
22.3 Model to Code Structure
510(4)
22.4 Trim Problem
514(11)
22.5 Time Domain Simulation Problem
525(1)
22.6 Assembly Using a Graphical User Interface
525(6)
22.7 Simulation Executives
531(2)
22.8 Conclusions
533(1)
References
533(1)
Problem
534(1)
Appendix A: Units 535(12)
Appendix B: Integration Techniques 547(36)
Appendix C: Linear Algebra 583(30)
Appendix D: Useful Mathematical Tools 613(10)
Appendix E: Nondimensional Coefficients 623(4)
Appendix F: Solution of the Biot-Savart Law for a Straight-line Segment 627(10)
Appendix G: Momentum Principles 637(6)
Appendix H: Propeller2017 Program Users Guide 643(10)
Appendix I: Pearls of Wisdom 653(8)
Appendix J: Details of a Simple Rotor Model 661(20)
Appendix K: Improvement of the Quasi-static Rotor Model 681(8)
Appendix L: The Curve 689(6)
Appendix M: BER_single Users' Guide 695(22)
Appendix N: The Floquet Method 717(6)
Index 723(18)
Supporting Materials 741