Space Vehicle Guidance, Control and Astrodynamics 3rd ed. [Kietas viršelis]

  • Formatas: Hardback, 732 pages, aukštis x plotis x storis: 236x163x41 mm, weight: 1338 g, illustrations
  • Serija: AIAA Education Series
  • Išleidimo metai: 22-Oct-2015
  • Leidėjas: American Institute of Aeronautics & Astronautics
  • ISBN-10: 1624102751
  • ISBN-13: 9781624102752
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 732 pages, aukštis x plotis x storis: 236x163x41 mm, weight: 1338 g, illustrations
  • Serija: AIAA Education Series
  • Išleidimo metai: 22-Oct-2015
  • Leidėjas: American Institute of Aeronautics & Astronautics
  • ISBN-10: 1624102751
  • ISBN-13: 9781624102752
Kitos knygos pagal šią temą:
Space Vehicle Guidance, Control and Astrodynamics is written for those who are interested in guidance, navigation, control, and dynamics of advanced space systems, launch vehicles, robotic and human exploration of asteroids, and/or planetary defense missions. Chapters 2 through 5 are adopted from the author's previous book Space Vehicle Dynamics and Control, Second Edition while chapters 1, and 6 to 11, contain all new material specifically developed for this volume. It is intended for use as a textbook or a sustaining reference source for senior undergraduate or graduate courses. With emphasis on practical applications it is also a valuable reference for practicing engineers and researchers.
Preface xi
Chapter 1 Spacecraft Attitude Determination and Control 1(28)
1.1 Introduction
1(1)
1.2 Fundamentals of Spacecraft Attitude Dynamics
2(11)
1.3 Attitude Determination Using Vector Observations
13(4)
1.4 Recursive Attitude Determination
17(6)
1.5 Spacecraft Attitude Control
23(4)
References
27(2)
Chapter 2 Control Moment Gyros for Agile Imaging Satellites 29(78)
2.1 Introduction
29(3)
2.2 Single-Gimbal CMG Systems
32(4)
2.3 CMG Singularities and Singular Surfaces
36(5)
2.4 Singularity Analysis Using the Binet—Cauchy Identity
41(4)
2.5 CMG Null Motions
45(9)
2.6 Surface Theory of Differential Geometry
54(8)
2.7 Singularity-Robust Steering Logic
62(8)
2.8 Singularity Avoidance/Escape Logic
70(17)
2.9 Rapid Multitarget Acquisition and Pointing Control of Agile Spacecraft
87(17)
2.10 Variable-Speed Control Moment Gyros
104(1)
References
105(2)
Chapter 3 Solar-Sail Dynamics and Control 107(110)
3.1 Introduction
107(2)
3.2 Solar-Sail Attitude Control Issues
109(7)
3.3 Solar-Radiation-Pressure Models
116(3)
3.4 Spin Stabilization of Sailcraft
119(4)
3.5 Sailcraft in an Earth-Centered Elliptic Orbit
123(11)
3.6 Solar-Sail Attitude Control Using a Gimbaled Control Boom and Control Vanes
134(7)
3.7 Gimbaled Thrust Vector Control Design for a Sailcraft
141(4)
3.8 Attitude Control System Architecture for Solar Sails
145(6)
3.9 Solar-Sail Flight Validation (SSFV) Mission
151(6)
3.10 Attitude Dynamics of a Solar-Sail with Translating Control Masses
157(5)
3.11 Preliminary Design of the Propellantless Primary ACS
162(3)
3.12 Micro-PPT-Based Secondary ACS for Solar Sails
165(9)
3.13 Orbital Dynamics of Solar Sails
174(10)
3.14 Examples of Solar-Sail Trajectory Design
184(9)
3.15 Solar-Sail Thrust Vector Control Design
193(5)
3.16 TVC Design and Simulation for the SPI Mission
198(7)
3.17 Attitude Control of a Solar-Sail in Sun-Synchronous Orbit Using Reaction Wheels and Magnetic Torquers
205(7)
References
212(5)
Chapter 4 Solar-Sail Missions for Asteroid Deflection 217(56)
4.1 Introduction to the NEO Deflection Problem
217(11)
4.2 Solar-Sail Mission Concept for Asteroid Deflection
228(12)
4.3 Asteroid Deflection Using a Gravity Tractor
240(6)
4.4 Multiple Gravity Tractors in Halo Orbits
246(9)
4.5 Hovering Solar-Sail Gravity Tractor
255(8)
4.6 Asteroid Deflection Dynamics
263(7)
References
270(3)
Chapter 5 Attitude and Orbit Control of Space Solar Power Satellites 273(36)
5.1 Introduction
273(6)
5.2 System Description
279(2)
5.3 Orbital Dynamics
281(8)
5.4 Attitude Motion of an Inertially Oriented Spacecraft
289(4)
5.5 Structural Control Issues
293(1)
5.6 Attitude and Orbit Control
294(9)
5.7 Summary
303(2)
References
305(4)
Chapter 6 Launch-Vehicle Ascent Flight Control 309(62)
6.1 Introduction
309(4)
6.2 Launch-Vehicle Ascent Guidance
313(2)
6.3 Reference Frames and Rotational Kinematics
315(7)
6.4 The 6-DOF Equations of Motion
322(6)
6.5 Ascent Flight Simulation Example
328(7)
6.6 Linear Dynamic Models
335(3)
6.7 Pitch-Axis Ascent Flight Control Design
338(14)
6.8 Three-Axis Ascent Flight Control
352(1)
6.9 Ascent Flight Control of Flexible Launch Vehicles
353(8)
6.10 Ascent Flight Control in the Event of Uncontrolled Roll Drift
361(7)
References
368(3)
Chapter 7 Fundamentals of Astrodynamics 371(52)
7.1 Two-Body Orbital Dynamics
371(1)
7.2 Kepler's Problem and Lagrange's f and g Functions
372(4)
7.3 Lambert's Problem
376(4)
7.4 Gauss's Method for Lambert's Problem
380(2)
7.5 Baffin's Method for Lambert's Problem
382(5)
7.6 Gooding's Method for Lambert's Problem
387(6)
7.7 Sun's Method for Lambert's Problem
393(3)
7.8 A Universal Variable Formulation for Time-of-Flight
396(8)
7.9 B-Plane Targeting Problem
404(5)
7.10 Elliptic Clohessy-Wiltshire-Hill (CWH) Equations
409(11)
References
420(3)
Chapter 8 Orbital Intercept, Rendezvous, and Terminal Guidance 423(68)
8.1 Introduction
423(2)
8.2 Dynamic Model
425(1)
8.3 PN-Based Feedback Guidance Laws
426(7)
8.4 Predictive/Explicit Guidance
433(13)
8.5 Optimal Feedback Guidance Algorithms
446(7)
8.6 Generalized ZEM/ZEV Feedback Guidance
453(17)
8.7 Waypoint-Optimized ZEM/ZEV Feedback Guidance
470(18)
8.8 Summary
488(2)
References
490(1)
Chapter 9 Trajectory Analysis and Design for Asteroid Missions 491(40)
9.1 NASA's Asteroid Initiative and Grand Challenge
491(5)
9.2 Human Space Exploration of Near-Earth Asteroids
496(10)
9.3 Trajectory Analysis and Design for Asteroid Deflection Missions
506(10)
9.4 Low-Thrust Trajectory Design for NASA's Asteroid Redirect Mission
516(13)
References
529(2)
Chapter 10 Planetary Defense Mission Analysis and Design 531(120)
10.1 Introduction
531(4)
10.2 Hypervelocity Asteroid Intercept Vehicle (HAIV) Mission Concept
535(10)
10.3 Planetary Defense Flight Validation (PDFV) Mission Design
545(25)
10.4 Terminal Intercept Guidance with Optical and Infrared Seekers
570(26)
10.5 Hypervelocity Kinetic Impact and Nuclear Subsurface Explosion: Modeling and Simulation
596(35)
10.6 Suborbital Intercept and Disruption of NEOs
631(16)
References
647(4)
Chapter 11 Close-Proximity Dynamics and Control Around Asteroids 651(30)
11.1 Introduction
651(3)
11.2 Gravitational Models of an Irregular-Shaped Asteroid
654(12)
11.3 Close-Proximity Dynamics and Fuel-Efficient Orbit Control
666(11)
11.4 Summary
677(1)
References
677(4)
Index 681(28)
Supporting Materials 709