Preface |
|
xv | |
|
|
1 | (12) |
|
|
1 | (1) |
|
1.2 Welcome to the digital age |
|
|
2 | (3) |
|
|
5 | (1) |
|
|
6 | (3) |
|
|
9 | (4) |
|
|
11 | (2) |
|
Chapter 2 Observing Behavior |
|
|
13 | (72) |
|
|
13 | (1) |
|
|
14 | (3) |
|
2.3 Ten common characteristics of big data |
|
|
17 | (24) |
|
|
17 | (4) |
|
|
21 | (2) |
|
|
23 | (1) |
|
|
24 | (3) |
|
|
27 | (2) |
|
|
29 | (4) |
|
|
33 | (2) |
|
2.3.8 Algorithmically confounded |
|
|
35 | (2) |
|
|
37 | (2) |
|
|
39 | (2) |
|
|
41 | (20) |
|
|
41 | (5) |
|
2.4.2 Forecasting and nowcasting |
|
|
46 | (4) |
|
2.4.3 Approximating experiments |
|
|
50 | (11) |
|
|
61 | (24) |
|
|
62 | (8) |
|
|
70 | (7) |
|
|
77 | (8) |
|
Chapter 3 Asking Questions |
|
|
85 | (62) |
|
|
85 | (2) |
|
3.2 Asking versus observing |
|
|
87 | (2) |
|
3.3 The total survey error framework |
|
|
89 | (10) |
|
|
91 | (3) |
|
|
94 | (4) |
|
|
98 | (1) |
|
|
99 | (8) |
|
3.5 New ways of asking questions |
|
|
107 | (10) |
|
3.5.1 Ecological momentary assessments |
|
|
108 | (3) |
|
|
111 | (4) |
|
|
115 | (2) |
|
3.6 Surveys linked to big data sources |
|
|
117 | (13) |
|
|
118 | (4) |
|
|
122 | (8) |
|
|
130 | (17) |
|
|
130 | (6) |
|
|
136 | (5) |
|
|
141 | (6) |
|
Chapter 4 Running Experiments |
|
|
147 | (84) |
|
|
147 | (2) |
|
4.2 What are experiments? |
|
|
149 | (2) |
|
4.3 Two dimensions of experiments: lab-field and analog-digital |
|
|
151 | (7) |
|
4.4 Moving beyond simple experiments |
|
|
158 | (16) |
|
|
161 | (6) |
|
4.4.2 Heterogeneity of treatment effects |
|
|
167 | (2) |
|
|
169 | (5) |
|
|
174 | (14) |
|
4.5.1 Use existing environments |
|
|
175 | (3) |
|
4.5.2 Build your own experiment |
|
|
178 | (4) |
|
4.5.3 Build your own product |
|
|
182 | (1) |
|
4.5.4 Partner with the powerful |
|
|
183 | (5) |
|
|
188 | (14) |
|
4.6.1 Create zero variable cost data |
|
|
190 | (6) |
|
4.6.2 Build ethics into your design: replace, refine, and reduce |
|
|
196 | (6) |
|
|
202 | (29) |
|
|
203 | (6) |
|
|
209 | (11) |
|
|
220 | (11) |
|
Chapter 5 Creating Mass Collaboration |
|
|
231 | (50) |
|
|
231 | (2) |
|
|
233 | (13) |
|
|
234 | (7) |
|
5.2.2 Crowd-coding of political manifestos |
|
|
241 | (3) |
|
|
244 | (2) |
|
|
246 | (10) |
|
|
246 | (3) |
|
|
249 | (3) |
|
|
252 | (2) |
|
|
254 | (2) |
|
5.4 Distributed data collection |
|
|
256 | (9) |
|
|
257 | (2) |
|
|
259 | (3) |
|
|
262 | (3) |
|
|
265 | (6) |
|
5.5.1 Motivate participants |
|
|
265 | (1) |
|
5.5.2 Leverage heterogeneity |
|
|
266 | (1) |
|
|
267 | (1) |
|
|
267 | (1) |
|
|
268 | (1) |
|
5.5.6 Final design advice |
|
|
269 | (2) |
|
|
271 | (10) |
|
|
272 | (5) |
|
|
277 | (4) |
|
|
281 | (74) |
|
|
281 | (2) |
|
|
283 | (5) |
|
6.2.1 Emotional Contagion |
|
|
284 | (1) |
|
6.2.2 Tastes, Ties, and Time |
|
|
285 | (1) |
|
|
286 | (2) |
|
|
288 | (6) |
|
|
294 | (7) |
|
6.4.1 Respect for Persons |
|
|
295 | (1) |
|
|
296 | (2) |
|
|
298 | (1) |
|
6.4.4 Respect for Law and Public Interest |
|
|
299 | (2) |
|
6.5 Two ethical frameworks |
|
|
301 | (2) |
|
|
303 | (18) |
|
|
303 | (4) |
|
6.6.2 Understanding and managing informational risk |
|
|
307 | (7) |
|
|
314 | (3) |
|
6.6.4 Making decisions in the face of uncertainty |
|
|
317 | (4) |
|
|
321 | (3) |
|
6.7.1 The IRB is a floor, not a ceiling |
|
|
321 | (1) |
|
6.7.2 Put yourself in everyone else's shoes |
|
|
322 | (2) |
|
6.7.3 Think of research ethics as continuous, not discrete |
|
|
324 | (1) |
|
|
324 | (31) |
|
|
325 | (6) |
|
|
331 | (7) |
|
|
338 | (17) |
|
|
355 | (6) |
|
|
355 | (1) |
|
|
355 | (3) |
|
7.2.1 The blending of readymades and custommades |
|
|
355 | (1) |
|
7.2.2 Participant-centered data collection |
|
|
356 | (1) |
|
7.2.3 Ethics in research design |
|
|
357 | (1) |
|
7.3 Back to the beginning |
|
|
358 | (3) |
Acknowledgments |
|
361 | (6) |
References |
|
367 | (46) |
Index |
|
413 | |