Atnaujinkite slapukų nuostatas

El. knyga: Cohen-Macaulay Representations

Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book is a comprehensive treatment of the representation theory of maximal Cohen-Macaulay (MCM) modules over local rings. This topic is at the intersection of commutative algebra, singularity theory, and representations of groups and algebras. Two introductory chapters treat the Krull-Remak-Schmidt Theorem on uniqueness of direct-sum decompositions and its failure for modules over local rings. Chapters 3-10 study the central problem of classifying the rings with only finitely many indecomposable MCM modules up to isomorphism, i.e., rings of finite CM type. The fundamental material--ADE/simple singularities, the double branched cover, Auslander-Reiten theory, and the Brauer-Thrall conjectures--is covered clearly and completely. Much of the content has never before appeared in book form. Examples include the representation theory of Artinian pairs and Burban-Drozd's related construction in dimension two, an introduction to the McKay correspondence from the point of view of maximal Cohen-Macaulay modules, Auslander-Buchweitz's MCM approximation theory, and a careful treatment of nonzero characteristic. The remaining seven chapters present results on bounded and countable CM type and on the representation theory of totally reflexive modules.
Preface xi
Chapter 1 The Krull-Remak-Schmidt Theorem 1(12)
1 KRS in an additive category
1(5)
2 KRS over Henselian rings
6(1)
3 R-modules vs. R-modules
7(2)
4 Exercises
9(4)
Chapter 2 Semigroups of Modules 13(16)
1 Krull monoids
14(3)
2 Realization in dimension one
17(6)
3 Realization in dimension two
23(3)
4 Flat local homomorphisms
26(1)
5 Exercises
27(2)
Chapter 3 Dimension Zero 29(12)
1 Artinian rings with finite Cohen-Macaulay type
29(3)
2 Artinian pairs
32(7)
3 Exercises
39(2)
Chapter 4 Dimension One 41(20)
1 Necessity of the Drozd-Roiter conditions
42(3)
2 Sufficiency of the Drozd-Roiter conditions
45(5)
3 ADE singularities
50(2)
4 The analytically ramified case
52(2)
5 Multiplicity two
54(2)
6 Ranks of indecomposable MCM modules
56(1)
7 Why MCM modules?
57(1)
8 Exercises
58(3)
Chapter 5 Invariant Theory 61(20)
1 The skew group ring
61(4)
2 The endomorphism algebra
65(6)
3 Group representations and the McKay-Gabriel quiver
71(6)
4 Exercises
77(4)
Chapter 6 Kleinian Singularities and Finite CM Type 81(28)
1 Invariant rings in dimension two
81(2)
2 Kleinian singularities
83(8)
3 McKay-Gabriel quivers of the Kleinian singularities
91(6)
4 Geometric McKay correspondence
97(9)
5 Exercises
106(3)
Chapter 7 Isolated Singularities and Dimension Two 109(14)
1 Miyata's theorem
109(4)
2 Isolated singularities
113(4)
3 Two-dimensional CM rings of finite CM type
117(3)
4 Exercises
120(3)
Chapter 8 The Double Branched Cover 123(18)
1 Matrix factorizations
123(5)
2 The double branched cover
128(5)
3 Knorrer's periodicity
133(6)
4 Exercises
139(2)
Chapter 9 Hypersurfaces with Finite CM Type 141(22)
1 Simple singularities
141(3)
2 Hypersurfaces in good characteristics
144(6)
3 Gorenstein rings of finite CM type
150(1)
4 Matrix factorizations for the Kleinian singularities
151(8)
5 Bad characteristics
159(1)
6 Exercises
160(3)
Chapter 10 Ascent and Descent 163(12)
1 Descent
163(1)
2 Ascent to the completion
164(6)
3 Ascent along separable field extensions
170(2)
4 Equicharacteristic Gorenstein singularities
172(1)
5 Exercises
173(2)
Chapter 11 Auslander-Buchweitz Theory 175(28)
1 Canonical modules
175(4)
2 MCM approximations and FID hulls
179(10)
3 Numerical invariants
189(5)
4 The index and applications to finite CM type
194(6)
5 Exercises
200(3)
Chapter 12 Totally Reflexive Modules 203(14)
1 Stable Hom and Auslander transpose
203(4)
2 Complete resolutions
207(2)
3 Totally reflexive modules
209(6)
4 Exercises
215(2)
Chapter 13 Auslander-Reiten Theory 217(24)
1 AR sequences
217(7)
2 AR quivers
224(4)
3 Examples
228(10)
4 Exercises
238(3)
Chapter 14 Countable Cohen-Macaulay Type 241(26)
1 Structure
241(3)
2 Burban-Drozd triples
244(8)
3 Hypersurfaces of countable CM type
252(8)
4 Other examples
260(3)
5 Exercises
263(4)
Chapter 15 The Brauer-Thrall Conjectures 267(20)
1 The Harada-Sai lemma
268(2)
2 Faithful systems of parameters
270(6)
3 Proof of Brauer-Thrall I
276(4)
4 Brauer-Thrall II
280(5)
5 Exercises
285(2)
Chapter 16 Finite CM Type in Higher Dimensions 287(10)
1 Two examples
287(6)
2 Classification for homogeneous CM rings
293(2)
3 Exercises
295(2)
Chapter 17 Bounded CM Type 297(12)
1 Hypersurface rings
297(2)
2 Dimension one
299(4)
3 Descent in dimension one
303(4)
4 Exercises
307(2)
Appendix A Basics and Background 309(12)
1 Depth, syzygies, and Serre's conditions
309(4)
2 Multiplicity and rank
313(4)
3 Henselian rings
317(4)
Appendix B Ramification Theory 321(20)
1 Unramified homomorphisms
321(5)
2 Purity of the branch locus
326(9)
3 Galois extensions
335(6)
Bibliography 341(14)
Index 355