Atnaujinkite slapukų nuostatas

El. knyga: Condition Monitoring of Rotating Electrical Machines

  • Formatas: PDF+DRM
  • Serija: Energy Engineering
  • Išleidimo metai: 23-Sep-2011
  • Leidėjas: Institution of Engineering and Technology
  • Kalba: eng
  • ISBN-13: 9780863419911
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Serija: Energy Engineering
  • Išleidimo metai: 23-Sep-2011
  • Leidėjas: Institution of Engineering and Technology
  • Kalba: eng
  • ISBN-13: 9780863419911
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Condition monitoring of engineering plant has increased in importance as engineering processes are automated and manpower is reduced. However, electrical machinery receives attention only at infrequent intervals when plant is shut down and the application of protective relays to machines has also reduced operator surveillance.



A first edition of Condition Monitoring of Electrical Machines, written by Tavner and Penman, was published in 1987. The economics of industry have now changed, as a result of the privatisation and deregulation of the energy industry, placing emphasis on the importance of reliable operation of plant, throughout the whole life cycle, regardless of first cost. The availability of advanced electronics and software in powerful instrumentation, computers, and digital signal processors (DSP) has simplified our ability to instrument and analyse machinery. As a result condition monitoring is now being applied to a wider range of systems, from fault-tolerant drives of a few hundred watts in the aerospace industry, to machinery of a few hundred megawatts in major capital plant.



In this new book the original authors have been joined by Ran, an expert in power electronics and control, and Sedding, an expert in the monitoring of electrical insulation systems. Together the authors have revised and expanded the earlier book, merging their own experience with that of machine analysts to bring it up to date. The book is aimed at professional engineers in the energy, process engineering and manufacturing industries, plus research workers and students.
Preface xiii
Acknowledgments xvii
Nomenclature xix
1 Introduction to condition monitoring
1
1.1 Introduction
1
1.2 The need for monitoring
4
1.3 What and when to monitor
7
1.4 Scope of the text
9
1.5 References
10
2 Construction, operation and failure modes of electrical machines
13
2.1 Introduction
13
2.2 Materials and temperature
14
2.3 Construction of electrical machines
16
2.3.1 General
16
2.3.2 Stator core and frame
18
2.3.3 Rotors
18
2.3.4 Windings
18
2.3.5 Enclosures
20
2.3.6 Connections
26
2.3.7 Summary
26
2.4 Structure of electrical machines and their types
26
2.5 Machine specification and failure modes
33
2.6 Insulation ageing mechanisms
35
2.6.1 General
35
2.6.2 Thermal ageing
36
2.6.3 Electrical ageing
36
2.6.4 Mechanical ageing
37
2.6.5 Environmental ageing
38
2.6.6 Synergism between ageing stresses
39
2.7 Insulation failure modes
39
2.7.1 General
39
2.7.2 Stator winding insulation
40
2.7.3 Stator winding faults
45
2.7.4 Rotor winding faults
50
2.8 Other failure modes
54
2.8.1 Stator core faults
54
2.8.2 Connection faults (high-voltage motors and generators)
54
2.8.3 Water coolant faults (all machines)
56
2.8.4 Bearing faults
56
2.8.5 Shaft voltages
56
2.9 Conclusion
59
2.10 References
59
3 Reliability of machines and typical failure rates
61
3.1 Introduction
61
3.2 Definition of terms
61
3.3 Failure sequence and effect on monitoring
63
3.4 Typical root causes and failure modes
65
3.4.1 General
65
3.4.2 Root causes
65
3.4.3 Failure modes
66
3.5 Reliability analysis
66
3.6 Machinery structure
69
3.7 Typical failure rates and MTBFs
71
3.8 Conclusion
75
3.9 References
76
4 Instrumentation requirements
79
4.1 Introduction
79
4.2 Temperature measurement
81
4.3 Vibration measurement
88
4.3.1 General
88
4.3.2 Displacement transducers
89
4.3.3 Velocity transducers
91
4.3.4 Accelerometers
92
4.4 Force and torque measurement
94
4.5 Electrical and magnetic measurement
97
4.6 Wear and debris measurement
100
4.7 Signal conditioning
102
4.8 Data acquisition
104
4.9 Conclusion
106
4.10 References
106
5 Signal processing requirements
109
5.1 Introduction
109
5.2 Spectral analysis
110
5.3 High-order spectral analysis
115
5.4 Correlation analysis
116
5.5 Signal processing for vibration
118
5.5.1 General
118
5.5.2 Cepstrum analysis
118
5.5.3 Time averaging and trend analysis
120
5.6 Wavelet analysis
121
5.7 Conclusion
125
5.8 References
125
6 Temperature monitoring
127
6.1 Introduction
127
6.2 Local temperature measurement
127
6.3 Hot-spot measurement and thermal images
132
6.4 Bulk measurement
132
6.5 Conclusion
134
6.6 References
134
7 Chemical monitoring
137
7.1 Introduction
137
7.2 Insulation degradation
137
7.3 Factors that affect detection
138
7.4 Insulation degradation detection
142
7.4.1 Particulate detection: core monitors
142
7.4.2 Particulate detection: chemical analysis
146
7.4.3 Gas analysis off-line
148
7.4.4 Gas analysis on-line
149
7.5 Lubrication oil and bearing degradation
152
7.6 Oil degradation detection
153
7.7 Wear debris detection
153
7.7.1 General
153
7.7.2 Ferromagnetic techniques
154
7.7.3 Other wear debris detection techniques
155
7.8 Conclusion
157
7.9 References
157
8 Vibration monitoring
159
8.1 Introduction
159
8.2 Stator core response
159
8.2.1 General
159
8.2.2 Calculation of natural modes
161
8.2.3 Stator electromagnetic force wave
164
8.3 Stator end-winding response
167
8.4 Rotor response
168
8.4.1 Transverse response
168
8.4.2 Torsional response
171
8.5 Bearing response
173
8.5.1 General
173
8.5.2 Rolling element bearings
173
8.5.3 Sleeve bearings
175
8.6 Monitoring techniques
176
8.6.1 Overall level monitoring
177
8.6.2 Frequency spectrum monitoring
179
8.6.3 Faults detectable from the stator force wave
182
8.6.4 Torsional oscillation monitoring
183
8.6.5 Shock pulse monitoring
187
8.7 Conclusion
189
8.8 References
189
9 Electrical techniques: current, flux and power monitoring
193
9.1 Introduction
193
9.2 Generator and motor stator faults
193
9.2.1 Generator stator winding fault detection
193
9.2.2 Stator current monitoring for stator faults
193
9.2.3 Brushgear fault detection
194
9.2.4 Rotor-mounted search coils
194
9.3 Generator rotor faults
194
9.3.1 General
194
9.3.2 Earth leakage faults on-line
195
9.3.3 Turn-to-turn faults on-line
196
9.3.4 Turn-to-turn and earth leakage faults off-line
204
9.4 Motor rotor faults
207
9.4.1 General
207
9.4.2 Airgap search coils
207
9.4.3 Stator current monitoring for rotor faults
207
9.4.4 Rotor current monitoring
210
9.5 Generator and motor comprehensive methods
212
9.5.1 General
212
9.5.2 Shaft flux
213
9.5.3 Stator current
217
9.5.4 Power
217
9.5.5 Shaft voltage or current
219
9.5.6 Mechanical and electrical interaction
221
9.6 Effects of variable speed operation
221
9.7 Conclusion
224
9.8 References
224
10 Electrical techniques: discharge monitoring 229
10.1 Introduction
229
10.2 Background to discharge detection
229
10.3 Early discharge detection methods
231
10.3.1 RF coupling method
231
10.3.2 Earth loop transient method
233
10.3.3 Capacitive coupling method
235
10.3.4 Wideband RF method
236
10.3.5 Insulation remanent life
236
10.4 Detection problems
238
10.5 Modern discharge detection methods
239
10.6 Conclusion
241
10.7 References
241
11 Application of artificial intelligence techniques 245
11.1 Introduction
245
11.2 Expert systems
246
11.3 Fuzzy logic
250
11.4 Artificial neural networks
253
11.4.1 General
253
11.4.2 Supervised learning
254
11.4.3 Unsupervised learning
256
11.5 Conclusion
260
11.6 References
261
12 Condition-based maintenance and asset management 263
12.1 Introduction
263
12.2 Condition-based maintenance
263
12.3 Life-cycle costing
265
12.4 Asset management
265
12.5 Conclusion
267
12.6 References
268
Appendix Failure modes and root causes in rotating electrical machines 269
Index 277
Peter Tavner MA, PhD, Eur Ing, CEng, FIET, MIEEE is Professor of New and Renewable Energy and Head of the School of Engineering, Durham University, UK. He is a winner of the Institution Premium of the IEE.



Li Ran BSc, PhD, MIET, MIEEE is Reader in Power Electronics in the New and Renewable Energy Group, School of Engineering, Durham University, UK. He received the Stanley Gray Award of the Institute of Marine Engineering Science and Technology for work on the monitoring of motors in the offshore environment.



Jim Penman BSc, PhD, DSc(Eng), FIET, FIMechE, CEng, FRSE is a private consultant in condition-based maintenance and project management. He is a winner of three IEE Premiums: the Maxwell Premium on two occasions and the Science and Technology Premium.



Howard Sedding BSc, MSc, PhD, CEng, MIET, MIEEE is Principal Engineer in the Transmission and Distribution Technologies Group at Kinectrics Inc, formerly Ontario Hydro Research Division. He is a winner of the Ayrton Premium of the IEE.