Atnaujinkite slapukų nuostatas

El. knyga: Dynamics Near the Subcritical Transition of the 3D Couette Flow II: Above Threshold Case

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This is the second in a pair of works which study small disturbances to the plane, periodic 3D Couette flow in the incompressible Navier-Stokes equations at high Reynolds number Re. In this work, we show that there is constant 0 0 exist at least until t = c0 1 and in general evolve to be O(c0) due to the lift-up e ect. Further, after times t Re1/3, the streamwise dependence of the solution is rapidly diminished by a mixing-enhanced dissipation e ect and the solution is attracted back to the class of "2.5 dimensional" streamwise-independent solutions (sometimes referred to as "streaks"). The largest of these streaks are expected to eventually undergo a secondary instability at t ? ???1. Hence, our work strongly suggests, for all (sufficiently regular) initial data, the genericity of the "lift-up e ect streak growth streak breakdown" scenario for turbulent transition of the 3D Couette flow near the threshold of stability forwarded in the applied mathematics and physics literature.
Jacob Bedrossian, University of Maryland, College Park, MD.

Pierre Germain, Courant Institute of Mathematical Sciences, New York City, NY.

Nader Masmoudi, Courant Institute of Mathematical Sciences, New York City, New York.