Atnaujinkite slapukų nuostatas

El. knyga: Epistemology of the Cell: A Systems Perspective on Biological Knowledge

, (Center for Imaging Science, Rochester Institute of Technology)
Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

"Honorable mention Biomedicine and Neuroscience, 2011 Prose Awards" An examination of how the cell should be described in order to effectively process biological data

"The fruitful pursuit of biological knowledge requires one to take Einstein's admonition [ on science without epistemology] as a practical demand for scientific research, to recognize Waddington's characterization of the subject matter of biology, and to embrace Wiener's conception of the form of biological knowledge in response to its subject matter. It is from this vantage point that we consider the epistemology of the cell." from the Preface

In the era of high biological data throughput, biomedical engineers need a more systematic knowledge of the cell in order to perform more effective data handling. Epistemology of the Cell is the first authored book to break down this knowledge. This text examines the place of biological knowledge within the framework of science as a whole and addresses issues focused on the specific nature of biology, how biology is studied, and how biological knowledge is translated into applications, in particular with regard to medicine.

The book opens with a general discussion of the historical development of human understanding of scientific knowledge, the scientific method, and the manner in which scientific knowledge is represented in mathematics. The narrative then gets specific for biology, focusing on knowledge of the cell, the basic unit of life. The salient point is the analogy between a systems-based analysis of factory regulation and the regulation of the cell. Each chapter represents a key topic of current interest, including:





Causality and randomness



Translational science



Stochastic validation: classification



Stochastic validation: networks



Model-based experimentation in biology





Epistemology of the Cell is written for biomedical researchers whose interests include bioinformatics, biological modeling, biostatistics, and biological signal processing.

Recenzijos

The authors of this interesting and opinionated book state that the driving force behind the work was Einsteins comment that science without epistemology isinsofar as it is thinkable at allprimitive and muddled . . . The last chapter of the book is an excellent exposition of the need for a systems-level model-based approach in biology and medicine.  (Computing Reviews, 19 February  2013)

Daugiau informacijos

Commended for R.R. Hawkins Award - Biomedicine & Neuroscience 2011 (United States).
Preface ix
Acknowledgments xi
1 Science and Knowledge
1(10)
2 Causality and the Three Pillars of Aristotelian Science
11(24)
3 Scientific Knowledge
35(24)
4 Cells and Factories
59(26)
5 Translational Science
85(12)
6 Stochastic Validation: Classifiers
97(32)
7 Stochastic Validation: Networks
129(18)
8 Sola Fides
147(22)
9 Model-based Experimentation in Biology
169(20)
References 189(8)
Index 197(6)
IEEE Press Series on Biomedical Engineering 203
EDWARD R. DOUGHERTY, PhD, is Director of the Genomic Signal Processing Laboratory at Texas A&M University, where he holds the Robert M. Kennedy '26 Chair and is Professor in the Department of Electrical and Computer Engineering. He is also co-Director of the Computational Biology Division at the Translational Genomics Research Institute as well as Adjunct Professor in the Department of Bioinformatics and Computational Biology, M. D. Anderson Cancer Center at the University of Texas. Dr. Dougherty has published more than 300 peer-reviewed journal articles and book chapters. MICHAEL L. BITTNER, PhD, is co-Director and Senior Investigator at the Computational Biology Division at the Translational Genomics Research Institute. Previously, he was associate investigator in the Cancer Genetics Branch of the National Human Genome Research Institute at the National Institutes of Health. Dr. Bittner holds a dozen patents and has published more than 100 articles.