Atnaujinkite slapukų nuostatas

El. knyga: Galois Representations and (Phi, Gamma)-Modules

(Westfälische Wilhelms-Universität Münster, Germany)
Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Understanding Galois representations is one of the central goals of number theory. Around 1990, Fontaine devised a strategy to compare such p-adic Galois representations to seemingly much simpler objects of (semi)linear algebra, the so-called etale (phi, gamma)-modules. This book is the first to provide a detailed and self-contained introduction to this theory. The close connection between the absolute Galois groups of local number fields and local function fields in positive characteristic is established using the recent theory of perfectoid fields and the tilting correspondence. The author works in the general framework of LubinTate extensions of local number fields, and provides an introduction to LubinTate formal groups and to the formalism of ramified Witt vectors. This book will allow graduate students to acquire the necessary basis for solving a research problem in this area, while also offering researchers many of the basic results in one convenient location.

Recenzijos

'Much of this material is available in the literature, but it has never been presented so cleanly and concisely in a single place before In this book, Schneider has done a remarkable job of displaying the beauty and power of perfectoid theoretic techniques. His text is sure to occupy and satisfy the attention of students and researchers working on Galois representations, or those who suspect that perfectoid-style techniques might be relevant for their work. We recommend Schneider's text to anyone with even a passing interest in the perfectoid revolution initiated by Scholze.' Cameron Franc, Mathematical Reviews

Daugiau informacijos

A detailed and self-contained introduction to a key part of local number theory, ideal for graduate students and researchers.
Preface vii
Overview 1(4)
1 Relevant Constructions
5(78)
1.1 Ramified Witt Vectors
7(17)
1.2 Unramified Extensions
24(4)
1.3 Lubin--Tate Formal Group Laws
28(13)
1.4 Tilts and the Field of Norms
41(23)
1.5 The Weak Topology on Witt Vectors
64(4)
1.6 The Isomorphism between HL and HEL
68(7)
1.7 A Two-Dimensional Local Field
75(8)
2 (φL, ΓL)-Modules
83(27)
2.1 The Coefficient Ring
84(14)
2.2 The Modules
98(9)
2.3 Examples
107(3)
3 An Equivalence of Categories
110(26)
3.1 The Functors
111(12)
3.2 The Case of Characteristic p Coefficients
123(6)
3.3 The Main Theorem
129(7)
4 Further Topics
136(8)
4.1 Iwasawa Cohomology
136(1)
4.2 Wach Modules
137(1)
4.3 (φL, ΓL)-Modules over the Robba Ring
138(2)
4.4 (φL, ΓL)-Modules and Character Varieties
140(1)
4.5 Multivariate (φL, ΓL)-Modules
141(1)
4.6 Variation of (φL, ΓL)-Modules
141(1)
4.7 (φL, ΓL)-Modules and p-adic Local Langlands
142(2)
References 144(2)
Notation 146(2)
Subject Index 148
Peter Schneider is a professor in the Mathematical Institute at the University of Münster. His research interests lie within the Langlands program, which relates Galois representations to representations of p-adic reductive groups, as well as in number theory and in representation theory. He is the author of Nonarchimedean Functional Analysis (2001), p-Adic Lie Groups (2011) and Modular Representation Theory of Finite Groups (2012), and he is a member of the National German Academy of Science Leopoldina and of the Academia Europaea.