Foreword |
|
ix | |
|
|
1 | (206) |
|
|
3 | (60) |
|
|
4 | (6) |
|
|
10 | (6) |
|
|
16 | (5) |
|
|
21 | (8) |
|
|
29 | (11) |
|
1F Subgroup Relationships |
|
|
40 | (2) |
|
|
42 | (1) |
|
|
43 | (12) |
|
|
55 | (3) |
|
|
58 | (5) |
|
2 Abstract Regular Polytopes |
|
|
63 | (31) |
|
|
64 | (4) |
|
|
68 | (5) |
|
|
73 | (5) |
|
|
78 | (7) |
|
|
85 | (2) |
|
|
87 | (7) |
|
3 Realizations of Symmetric Sets |
|
|
94 | (45) |
|
|
94 | (4) |
|
|
98 | (3) |
|
|
101 | (5) |
|
|
106 | (5) |
|
3E Products of Realizations |
|
|
111 | (3) |
|
|
114 | (4) |
|
|
118 | (5) |
|
|
123 | (8) |
|
|
131 | (3) |
|
|
134 | (1) |
|
3L Realizations over Subfields |
|
|
135 | (2) |
|
3M Realizations and Representations |
|
|
137 | (2) |
|
4 Realizations of Polytopes |
|
|
139 | (30) |
|
4A Wythoff's Construction |
|
|
139 | (6) |
|
|
145 | (3) |
|
4C Degenerate Realizations |
|
|
148 | (1) |
|
4D Induced Cosine Vectors |
|
|
149 | (4) |
|
|
153 | (1) |
|
|
154 | (5) |
|
4G Examples of Realizations |
|
|
159 | (10) |
|
5 Operations and Constructions |
|
|
169 | (31) |
|
5A Operations on Polyhedra |
|
|
170 | (9) |
|
|
179 | (6) |
|
|
185 | (5) |
|
|
190 | (5) |
|
|
195 | (2) |
|
|
197 | (3) |
|
|
200 | (7) |
|
|
200 | (1) |
|
|
201 | (2) |
|
|
203 | (1) |
|
|
204 | (3) |
|
II Polytopes of Full Rank |
|
|
207 | (122) |
|
7 Classical Regular Polytopes |
|
|
209 | (92) |
|
|
209 | (8) |
|
7B Polytopes in All Dimensions |
|
|
217 | (9) |
|
|
226 | (8) |
|
|
234 | (6) |
|
|
240 | (8) |
|
|
248 | (3) |
|
|
251 | (11) |
|
|
262 | (4) |
|
|
266 | (11) |
|
7K Realizations of {5, 3, 3} |
|
|
277 | (24) |
|
8 Non-Classical Polytopes |
|
|
301 | (28) |
|
8A Polytopes in All Dimensions |
|
|
301 | (8) |
|
8B Apeirotopes in All Dimensions |
|
|
309 | (8) |
|
8C Apeirohedra and Polyhedra |
|
|
317 | (3) |
|
8D Higher-Dimensional Exceptions |
|
|
320 | (9) |
|
III Polytopes of Nearly Full Rank |
|
|
329 | (146) |
|
|
331 | (30) |
|
|
331 | (8) |
|
9B Twisting Small Diagrams |
|
|
339 | (2) |
|
|
341 | (9) |
|
9D Families of Apeirotopes |
|
|
350 | (11) |
|
10 Three-Dimensional Apeirohedra |
|
|
361 | (22) |
|
|
361 | (4) |
|
10B Groups of the Apeirohedra |
|
|
365 | (8) |
|
10C Rigidity of the Apeirohedra |
|
|
373 | (10) |
|
11 Four-Dimensional Polyhedra |
|
|
383 | (48) |
|
|
383 | (3) |
|
11B Mirror Vector (3, 2, 3) and Its Relatives |
|
|
386 | (9) |
|
|
395 | (16) |
|
11D Mirror Vector (2, 3, 2) |
|
|
411 | (3) |
|
11E Mirror Vector (2, 2, 2) |
|
|
414 | (12) |
|
|
426 | (5) |
|
12 Four-Dimensional Apeirotopes |
|
|
431 | (19) |
|
|
431 | (6) |
|
12B Group U5 and Relatives |
|
|
437 | (5) |
|
|
442 | (8) |
|
13 Higher-Dimensional Cases |
|
|
450 | (25) |
|
|
451 | (1) |
|
13B Rotational Symmetry Groups |
|
|
452 | (8) |
|
13C The Gosset-Elte Polytopes |
|
|
460 | (1) |
|
13D The First Gosset Class |
|
|
461 | (3) |
|
13E The Second Gosset Class |
|
|
464 | (6) |
|
13F The Third Gosset Class |
|
|
470 | (2) |
|
13G A Degenerate Gosset Class |
|
|
472 | (3) |
|
IV Miscellaneous Polytopes |
|
|
475 | (107) |
|
|
477 | (29) |
|
|
477 | (4) |
|
|
481 | (2) |
|
|
483 | (8) |
|
|
491 | (2) |
|
|
493 | (2) |
|
|
495 | (3) |
|
|
498 | (8) |
|
15 Locally Toroidal Polytopes |
|
|
506 | (24) |
|
15A {{4. 4 : 4}, {4, 3}} and its Dual |
|
|
506 | (2) |
|
15B {{3, 4}, {4, 4 | 3}} and {{4, 4 | 3}, {4, 4 | 3}} |
|
|
508 | (2) |
|
15C {{4, 4 : 4}, {4, 4 | 3}} and its Dual |
|
|
510 | (4) |
|
15D {{4, 4 : 4}, {4, 4 : 6}} and its Dual |
|
|
514 | (3) |
|
15E {{4, 4 | 4}, {4, 4 | 3}} and its Dual |
|
|
517 | (3) |
|
15F Polytopes of Type {3m-2, 6} |
|
|
520 | (6) |
|
15G Polytopes of Type {3m-1, 6, 3n-1} |
|
|
526 | (4) |
|
16 A Family of 4-Polytopes |
|
|
530 | (16) |
|
16A The Polyhedron {5, 5 : 4} |
|
|
530 | (7) |
|
16B A Permutation Representation |
|
|
537 | (1) |
|
16C The Polytope {{5, 5 : 4}, {5, 3}} |
|
|
538 | (2) |
|
16D Layers and Strata of {{5, 5 : 4}, {5, 3}} |
|
|
540 | (1) |
|
16E The Dual Polytope {{3, 5}, {5, 5 : 4}} |
|
|
541 | (1) |
|
|
541 | (3) |
|
16G {3, 5, 3 :: 4} and {5, 3. 5 :: 4} |
|
|
544 | (2) |
|
17 Two Families of 5-Polytopes |
|
|
546 | (36) |
|
17A An Intuitive Approach |
|
|
547 | (2) |
|
|
549 | (10) |
|
17C A Quotient of {3, 5, 3, 5} |
|
|
559 | (3) |
|
|
562 | (4) |
|
|
566 | (5) |
|
|
571 | (5) |
|
17G Another Symmetric Set |
|
|
576 | (4) |
|
|
580 | (2) |
Afterword |
|
582 | (1) |
Bibliography |
|
583 | (8) |
Notation Index |
|
591 | (3) |
Author Index |
|
594 | (2) |
Subject Index |
|
596 | |