Atnaujinkite slapukų nuostatas

The Green Function Method in Statistical Mechanics [Minkštas viršelis]

  • Formatas: Paperback / softback, 272 pages, aukštis x plotis x storis: 230x153x15 mm, weight: 370 g
  • Serija: Dover Books on Physics
  • Išleidimo metai: 25-Dec-2015
  • Leidėjas: Dover Publications Inc.
  • ISBN-10: 0486797155
  • ISBN-13: 9780486797151
Kitos knygos pagal šią temą:
  • Formatas: Paperback / softback, 272 pages, aukštis x plotis x storis: 230x153x15 mm, weight: 370 g
  • Serija: Dover Books on Physics
  • Išleidimo metai: 25-Dec-2015
  • Leidėjas: Dover Publications Inc.
  • ISBN-10: 0486797155
  • ISBN-13: 9780486797151
Kitos knygos pagal šią temą:
Concise monograph devoted to techniques of solving many-body problems in physics using the quantum-mechanical Green function method. Requires some familiarity with the basic theory of quantum mechanics and statistical mechanics. 1962 edition.


This concise monograph is devoted to techniques of solving many-body problems in physics using the quantum-mechanical Green function method. Suitable for advanced undergraduates and graduate students of physics, it requires some familiarity with the basic theory of quantum mechanics and statistical mechanics.
Focusing on the general method, the treatment begins by establishing the connection between the Green functions and the thermodynamic and kinetic characteristics of a system. Subsequent chapters illustrate the method and apply it to different problems in the physics of condensed media, including the theory of electron plasmas in solids, electron-phonon interactions, and ferromagnetism at finite temperatures. Seven helpful Appendixes offer supplementary information.
Foreword v
Authors' preface vi
Foreword to the English edition viii
Translator's preface ix
Introduction 1(6)
Chapter I Basic relations
7(31)
1 The density matrix and time-correlation functions
7(5)
2 The spectral representation of a simple product
12(5)
3 Green functions and their spectral representation
17(6)
4 The diagonal elements of the Green functions; dispersion relations
23(2)
5 The simplest Green functions
25(13)
Chapter II The Green function equations of motion
38(47)
6 Equations of motion and Hamiltonians
38(5)
7 The chain of equations for the double-time Green functions
43(7)
8 Equations in terms of functional derivatives
50(6)
9 The mass and polarisation operators; the effective wave equation
56(12)
10 Dyson's equations and the multiplicative re-normalisation group
68(3)
11 Improved perturbation theory
71(14)
Chapter III Green functions and the macroscopic characteristics of a system
85(35)
12 Green functions and the thermodynamic potential
85(11)
13 Correlation functions
96(7)
14 The reaction of a system to external action; representation through double-time Green functions
103(7)
15 The reaction of a system to external action; representation through the vertex part
110(7)
16 Quasi-particles
117(3)
Chapter IV Plasma oscillations in solids
120(30)
17 Statement of the problem
120(3)
18 Plasma oscillation frequencies and damping
123(9)
19 Electron gas plasma spectrum; Fermi case
132(5)
20 Electron gas plasma spectrum; Boltzmann case
137(5)
21 Screening of a static field by free charges
142(4)
22 Degenerate bands
146(4)
Chapter V Charge carriers in solids
150(16)
23 Perfect semi-conductors
150(5)
24 Imperfect metals
155(5)
25 Localised levels in semi-conductors
160(2)
26 The electron-phonon coupling constant in metals
162(4)
Chapter VI Electron-phonon interaction
166(13)
27 Perturbation theory
166(6)
28 The energy spectrum of a superconductor
172(7)
Chapter VII Ferromagnetism
179(24)
29 Spin waves at finite temperatures
179(4)
30 The magnetisation in different temperature ranges
183(5)
31 Ferromagnetic resonance
188(6)
32 General relations for ferromagnetic resonance
194(9)
Appendix I Introduction to quantum field theory 203(22)
Appendix II Paul! operators 225(2)
Appendix III The causal Green function for a free electromagnetic field 227(2)
Appendix IV The spectral representations for many-time Green functions 229(3)
Appendix V The Bethe-Salpeter equation 232(4)
Appendix VI The mass operator and vertex part for systems with direct interactions 236(4)
Appendix VII Recent developments 240(3)
References 243(6)
Index 249