Atnaujinkite slapukų nuostatas

El. knyga: Industrial Sensors and Controls in Communication Networks: From Wired Technologies to Cloud Computing and the Internet of Things

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This informative text/reference presents a detailed review of the state of the art in industrial sensor and control networks. The book examines a broad range of applications, along with their design objectives and technical challenges. The coverage includes fieldbus technologies, wireless communication technologies, network architectures, and resource management and optimization for industrial networks. Discussions are also provided on industrial communication standards for both wired and wireless technologies, as well as for the Industrial Internet of Things (IIoT).

Topics and features: describes the FlexRay, CAN, and Modbus fieldbus protocols for industrial control networks, as well as the MIL-STD-1553 standard; proposes a dual fieldbus approach, incorporating both CAN and ModBus fieldbus technologies, for a ship engine distributed control system; reviews a range of industrial wireless sensor network (IWSN) applications, from environmental sensing and condition monitoring, to process automation; examines the wireless networking performance, design requirements, and technical limitations of IWSN applications; presents a survey of IWSN commercial solutions and service providers, and summarizes the emerging trends in this area; discusses the latest technologies and open challenges in realizing the vision of the IIoT, highlighting various applications of the IIoT in industrial domains; introduces a logistics paradigm for adopting IIoT technology on the Physical Internet.









This unique work will be of great value to all researchers involved in industrial sensor and control networks, wireless networking, and the Internet of Things.
Part I Industrial Control Networks
1 An Overview on Industrial Control Networks
3(14)
1.1 Introduction
3(1)
1.2 Architecture of Industrial Control Networks
4(2)
1.3 Requirements of Industrial Control Networks
6(2)
1.4 Communication Technologies for Industrial Control Networks
8(6)
1.4.1 Fieldbuses
8(3)
1.4.2 Industrial Ethernet
11(3)
1.5 Trends and Issues
14(1)
1.6 Conclusions
15(1)
References
16(1)
2 FlexRay Protocol: Objectives and Features
17(14)
2.1 Introduction
17(1)
2.2 FlexRay System
18(2)
2.2.1 Level 1---Network Topology
18(1)
2.2.2 Level 2---Interface
18(1)
2.2.3 Level 3---CHI and Protocol Engine
19(1)
2.3 Message Scheduling for FlexRay System
20(5)
2.3.1 FlexRay Static Segment
20(3)
2.3.2 FlexRay Dynamic Segment
23(1)
2.3.3 Comparison with CAN
24(1)
2.4 Verification and Validation
25(2)
2.4.1 Computer Simulation for Model Validation
25(1)
2.4.2 Formal Verification
26(1)
2.5 Software and Hardware
27(2)
2.5.1 Software
27(1)
2.5.2 Hardware
27(2)
2.6 Conclusions
29(1)
References
29(2)
3 Communication Using Controller Area Network Protocol
31(12)
3.1 Introduction
31(2)
3.2 CAN Protocol Overview
33(6)
3.2.1 Physical Layer
33(1)
3.2.2 Message Frame Format
34(2)
3.2.3 Medium Access Technique
36(2)
3.2.4 Error Management
38(1)
3.2.5 Implementation
39(1)
3.3 Main Features
39(2)
3.3.1 Advantages
39(1)
3.3.2 Performances
40(1)
3.3.3 Determinism
40(1)
3.3.4 Dependability
41(1)
3.4 Conclusions
41(1)
References
41(2)
4 Distributed Control System for Ship Engines Using Dual Fieldbus
43(22)
4.1 Introduction
43(3)
4.2 Redundant Distributed Control System
46(10)
4.2.1 Modbus Protocol
49(2)
4.2.2 CAN Protocol
51(2)
4.2.3 Redundancy
53(3)
4.3 Implementation and Experimental Test
56(6)
4.4 Conclusions
62(1)
References
62(3)
5 Implementing Modbus and CAN Bus Protocol Conversion Interface
65(8)
5.1 Introduction
65(1)
5.2 Modbus and CAN Bus
66(4)
5.2.1 Modbus
66(2)
5.2.2 CAN Bus
68(2)
5.3 Conversion Interface Design
70(2)
5.3.1 Hardware Design
70(1)
5.3.2 Software Design
71(1)
5.4 Conclusions
72(1)
References
72(1)
6 MIL-STD-1553 Protocol in High Data Rate Applications
73(16)
6.1 Introduction
73(1)
6.2 Related Works
74(1)
6.3 MIL-STD-1553 Network Protocol Infrastructure
75(6)
6.3.1 MIL-STD-1553 Hardware Elements
75(3)
6.3.2 MIL-STD-1553 Protocol Format
78(1)
6.3.3 Manchester Encoder/Decoder
78(1)
6.3.4 Quality Control Process
79(2)
6.4 Comparative Analysis of High-Speed Data Bus Technologies
81(5)
6.4.1 Traditional MIL-STD-1553 Architecture
81(1)
6.4.2 HyPer-1553TM Data Bus Technology
81(2)
6.4.3 Turbo 1553 Approach
83(2)
6.4.4 Tools for Testing and Simulation
85(1)
6.5 Conclusions and Future Works
86(1)
References
87(2)
7 Research and Design of 1553B Protocol Bus Control Unit
89(12)
7.1 Introduction
89(1)
7.2 1553B Protocol
90(1)
7.2.1 Hardware Characteristics
90(1)
7.2.2 Encoding
90(1)
7.2.3 Word and Message
90(1)
7.2.4 Hierarchical Division
91(1)
7.3 BCU Design
91(5)
7.3.1 Decoding Unit
92(2)
7.3.2 Data Encode Unit
94(1)
7.3.3 Command Words Decode Unit
94(1)
7.3.4 Send Control Unit
94(1)
7.3.5 Status Words Receive Control and Decode Unit
95(1)
7.3.6 Address Decode Unit
95(1)
7.3.7 Send Overtime Detection Unit
95(1)
7.3.8 Error Detection Unit
96(1)
7.3.9 DSP Communication Interface
96(1)
7.4 Logic Emulation
96(1)
7.5 Conclusions
97(1)
References
97(4)
Part II Industrial Wireless Sensor Networks
8 An Overview on Wireless Sensor Networks
101(14)
8.1 Introduction
101(1)
8.2 Wireless Sensor Networks
102(1)
8.3 Network Topologies of Wireless Sensor Networks
103(2)
8.4 Applications of WSNs
105(4)
8.4.1 Application Classification
106(1)
8.4.2 Examples of Application Requirements
107(2)
8.5 Characteristic Features of Wireless Sensor Networks
109(3)
8.5.1 Lifetime
109(1)
8.5.2 Flexibility
110(1)
8.5.3 Maintenance
110(2)
8.6 Existing Technologies and Applications
111(1)
8.7 Conclusions
112(1)
References
113(2)
9 Wireless Fieldbus for Industrial Networks
115(12)
9.1 Introduction
115(3)
9.2 Wireless Fieldbus Technology
118(4)
9.2.1 Overview
118(1)
9.2.2 Wireless Fieldbus Systems Proposals
119(3)
9.3 Issues in Wireless Fieldbus Networks
122(2)
9.3.1 Consistency Problems of Fieldbus Technology
123(1)
9.3.2 Problems for Token-Passing Protocols
123(1)
9.3.3 Problems in CSMA Based Protocol
124(1)
9.4 Conclusions
124(1)
References
124(3)
10 Wireless Sensor Networks for Industrial Applications
127(14)
10.1 Introduction
127(2)
10.2 Industrial Wireless Sensor Networks
129(1)
10.2.1 Safety Systems
129(1)
10.2.2 Closed-Loop Regulatory Systems
129(1)
10.2.3 Closed-Loop Supervisory Systems
130(1)
10.2.4 Open Loop Control Systems
130(1)
10.2.5 Alerting Systems
130(1)
10.2.6 Information Gathering Systems
130(1)
10.3 Industrial Standards
130(6)
10.3.1 ZigBee
131(1)
10.3.2 WirelessHART
132(2)
10.3.3 ISA100.11a
134(2)
10.4 Wireless Sensor Networks for Industrial Applications
136(3)
10.4.1 Industrial Mobile Robots
137(1)
10.4.2 Real-Time Inventory Management
137(1)
10.4.3 Process and Equipment Monitoring
138(1)
10.4.4 Environment Monitoring
139(1)
10.5 Conclusions
139(1)
References
140(1)
11 MAC Protocols for Energy-Efficient Wireless Sensor Networks
141(20)
11.1 Introduction
141(1)
11.2 MAC Layer-Related Sensor Network Properties
142(1)
11.2.1 Reasons of Energy Waste
142(1)
11.2.2 Communication Patterns
142(1)
11.2.3 Properties of a Well-Defined MAC Protocol
143(1)
11.3 Multiple-Access Consideration in Sensor Network Properties
143(6)
11.3.1 Network Topologies
144(2)
11.3.2 Time-Division Multiple Access (TDMA)
146(1)
11.3.3 Carrier-Sense Multiple Access (CSMA) and ALOHA
147(1)
11.3.4 Frequency-Division Multiple Access (FDMA)
148(1)
11.3.5 Code-Division Multiple Access (CDMA)
148(1)
11.4 Proposed MAC Layer Protocols
149(7)
11.4.1 Sensor-MAC
149(1)
11.4.2 WiseMAC
150(2)
11.4.3 Traffic-Adaptive MAC Protocol
152(1)
11.4.4 Sift
153(1)
11.4.5 DMAC
153(1)
11.4.6 Timeout-MAC/Dynamic Sensor-MAC
154(1)
11.4.7 Integration of MAC with Other Layers
155(1)
11.5 Open Issues and Conclusion
156(2)
References
158(3)
12 Cooperative Multi-channel Access for Industrial Wireless Networks Based 802.11 Standard
161(12)
12.1 Introduction
161(1)
12.2 Throughput Enhancement
162(5)
12.2.1 CAMMAC-802.11
162(2)
12.2.2 Using Directional Antennas
164(1)
12.2.3 Negotiation-Based Throughput Maximization Algorithm
165(2)
12.3 Access Delay
167(3)
12.4 Mitigating the Impact of Inter-node Interference
170(1)
12.5 Conclusions
171(1)
References
172(1)
13 802.11 Medium Access Control DCF and PCF: Performance Comparison
173(8)
13.1 Introduction
173(1)
13.2 IEEE 802.11 Media Access Protocols
174(3)
13.2.1 Distributed Coordinate Function (DCF)
175(1)
13.2.2 Point Coordinate Function (PCF)
176(1)
13.3 Performance Comparison
177(1)
13.4 Conclusions
178(1)
References
179(2)
14 An Overview of Ultra-Wideband Technology and Its Applications
181(16)
14.1 Introduction
181(1)
14.2 History and Background
182(1)
14.3 UWB Concepts
183(4)
14.3.1 High Data Rate
184(1)
14.3.2 Low Power Consumption
185(1)
14.3.3 Interference Immunity
185(1)
14.3.4 High Security
185(1)
14.3.5 Reasonable Range
185(1)
14.3.6 Large Channel Capacity
185(1)
14.3.7 Low Complexity, Low Cost
186(1)
14.3.8 Resistance to Jamming
186(1)
14.3.9 Scalability
186(1)
14.4 UWB Technologies
187(2)
14.4.1 Impulse Radio
187(1)
14.4.2 Multiband OFDM
187(2)
14.4.3 Comparison of UWB Technologies
189(1)
14.5 Technologies and Standards
189(4)
14.5.1 Bluetooth
189(1)
14.5.2 UWB
190(1)
14.5.3 UWB Standards
191(2)
14.5.4 Marketplace and Vendor Strategies
193(1)
14.6 UWB Applications
193(2)
14.6.1 Communications
194(1)
14.6.2 Radars/Sensors
195(1)
14.7 Conclusions
195(1)
References
196(1)
15 Ultra-Wideband Technology for Military Applications
197(10)
15.1 Introduction
197(1)
15.2 Technical Overview of Ultra-Wideband Systems
198(1)
15.3 Ultra-Wideband Technology for Military Applications
199(4)
15.4 Conclusions
203(1)
References
204(3)
Part III Industrial Internet of Things
16 An Overview on Industrial Internet of Things
207(10)
16.1 Introduction
207(1)
16.2 Architecture of IIoT System
207(3)
16.3 Key Enabling Technologies for IIoT
210(3)
16.3.1 Identification Technology
210(1)
16.3.2 Sensor
211(1)
16.3.3 Communication Technology
211(1)
16.3.4 IIoT Data Management
212(1)
16.3.5 Cloud Computing
212(1)
16.4 Major Application of IIoT
213(2)
16.4.1 Heath Care
213(1)
16.4.2 Logistics and Supply Chain
213(1)
16.4.3 Smart Cities
213(2)
16.5 Conclusions
215(1)
References
215(2)
17 Energy-Aware Real-Time Routing for Large-Scale Industrial Internet of Things
217(24)
17.1 Introduction
217(3)
17.2 Related Works
220(2)
17.3 System Model
222(3)
17.3.1 Network Topology
222(1)
17.3.2 Variable Definition
223(1)
17.3.3 Energy Model
223(2)
17.4 Energy-Aware Real-Time Routing Scheme (ERRS)
225(5)
17.4.1 Clustering Scheme
225(3)
17.4.2 Routing Scheme
228(2)
17.5 Performance Evaluation
230(7)
17.5.1 IEEE 802.15.4a CSMA/CA Scheme for IIoT
230(1)
17.5.2 Simulation Model
231(1)
17.5.3 Simulation Results
232(5)
17.6 Conclusions
237(1)
References
237(4)
18 3D Perception Framework for Stacked Container Layout in the Physical Internet
241(18)
18.1 Introduction
241(2)
18.2 Literature Review
243(1)
18.3 Problem and Methodology
244(5)
18.3.1 Problem Definition and Proposed Approach
244(2)
18.3.2 Methodology and Assumptions
246(3)
18.4 Mathematical Formulation of the CSP Problem
249(3)
18.4.1 Parameters and Variables
249(1)
18.4.2 Formulation
250(2)
18.5 Application and Results
252(4)
18.5.1 Experimental Setup
252(1)
18.5.2 Results and Discussions
253(3)
18.6 Conclusion and Future Works
256(2)
References
258(1)
19 An Information Framework of Internet of Things Services for Physical Internet
259(24)
19.1 Introduction
259(4)
19.2 IOT Infrastructure for Physical Internet
263(9)
19.2.1 π--Containers
263(3)
19.2.2 π--Movers
266(1)
19.2.3 π--Nodes
267(1)
19.2.4 Active Distributed PIMS for π-Nodes
268(4)
19.3 Service-Oriented Architecture for the IOT
272(3)
19.3.1 Physical Layer
273(1)
19.3.2 Network Layer
274(1)
19.3.3 Service Layer
274(1)
19.3.4 Interface Layer
275(1)
19.4 Management of Composite π--Containers: A Case Study
275(4)
19.4.1 Architecture
276(2)
19.4.2 An Information Flow Framework to Retrieve 3D Layouts
278(1)
19.4.3 Value-Added Services Enabled by Retrieved 3D Layouts
279(1)
19.5 Conclusion and Future Works
279(1)
References
280(3)
Index 283
Prof. Dong-Seong Kim is Director of the KIT Convergence Research Institute and ICT Convergence Research Center (ITRC program), supported by the Korean government, at Kumoh National Institute of Technology, Gumi, South Korea. He is a senior member of the IEEE and ACM.

Dr. Hoa Tran-Dang is a research professor, working in the NSL Laboratory, in the Department of ICT Convergence Engineering at Kumoh National Institute of Technology.