Atnaujinkite slapukų nuostatas

El. knyga: Infinite Ergodic Theory of Numbers

  • Formatas: 204 pages
  • Serija: De Gruyter Textbook
  • Išleidimo metai: 10-Oct-2016
  • Leidėjas: De Gruyter
  • ISBN-13: 9783110439427
Kitos knygos pagal šią temą:
  • Formatas: 204 pages
  • Serija: De Gruyter Textbook
  • Išleidimo metai: 10-Oct-2016
  • Leidėjas: De Gruyter
  • ISBN-13: 9783110439427
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

By connecting dynamical systems and number theory, this graduate textbook on ergodic theory acts as an introduction to a highly active area of mathematics, where a variety of strands of research open up. The text explores various concepts in infinite ergodic theory, always using continued fractions and other number-theoretic dynamical systems as illustrative examples.

Contents: Preface Mathematical symbols Number-theoretical dynamical systems Basic ergodic theory Renewal theory and -sum-level sets Infinite ergodic theory Applications of infinite ergodic theory Bibliography Index
Mathematical symbols ix
1 Number-theoretical dynamical systems
1(63)
1.1 Continued fractions and Diophantine approximation
1(11)
1.1.1 Continued fractions
1(6)
1.1.2 Elementary Diophantine approximation: Hurwitz's Theorem and badly approximable numbers
7(5)
1.2 Topological Dynamical Systems
12(18)
1.2.1 The Gauss map
15(1)
1.2.2 Symbolic dynamics
16(3)
1.2.3 A return to the Gauss map
19(2)
1.2.4 Elementary metrical Diophantine analysis
21(5)
1.2.5 Markov partitions for interval maps
26(4)
1.3 The Farey map: definition and topological properties
30(10)
1.3.1 The Farey map
30(4)
1.3.2 Topological properties of the Farey map
34(6)
1.4 Two further examples
40(18)
1.4.1 The α-Luroth maps
40(4)
1.4.2 The α-Farey maps
44(4)
1.4.3 Topological properties of Fα
48(3)
1.4.4 Expanding and expansive partitions
51(2)
1.4.5 Metrical Diophantine-like results for the α-Luroth expansion
53(5)
1.5 Notes and historical remarks
58(3)
1.5.1 The Farey sequence
58(1)
1.5.2 The classical Luroth series
59(2)
1.6 Exercises
61(3)
2 Basic ergodic theory
64(58)
2.1 Invariant measures
64(5)
2.1.1 Invariant measures for the Gauss and α-Luroth system
66(3)
2.2 Recurrence and conservativity
69(6)
2.3 The transfer operator
75(13)
2.3.1 Jacobians and the change of variable formula
75(1)
2.3.2 Obtaining invariant measures via the transfer operator
76(3)
2.3.3 The Ruelle operator
79(3)
2.3.4 Invariant measures for F, Fα, G and Lα
82(4)
2.3.5 Invariant measures via the jump transformation
86(2)
2.4 Ergodicity and exactness
88(27)
2.4.1 Ergodicity of the systems G and Lα
92(4)
2.4.2 Ergodic theorems for probability spaces and consequences for the Gauss and α-Luroth systems
96(7)
2.4.3 Ergodic theorems for infinite measures
103(2)
2.4.4 Inducing
105(4)
2.4.5 Uniqueness of the invariant measures for F and Fα
109(3)
2.4.6 Proof of Hopf's Ratio Ergodic Theorem
112(3)
2.5 Exactness revisited
115(5)
2.6 Exercises
120(2)
3 Renewal theory and α-sum-level sets
122(15)
3.1 Sum-level sets
122(1)
3.2 Sum-level sets for the α-Luroth expansion
123(12)
3.2.1 Classical renewal results
124(8)
3.2.2 Renewal theory applied to the α-sum-level sets
132(3)
3.3 Exercises
135(2)
4 Infinite ergodic theory
137(22)
4.1 The functional analytic perspective and the Chacon--Ornstein Ergodic Theorem
137(10)
4.2 Pointwise dual ergodicity
147(4)
4.3 ψ-mixing, Darling--Kac sets and pointwise dual ergodicity
151(6)
4.4 Exercises
157(2)
5 Applications of infinite ergodic theory
159(24)
5.1 Sum-level sets for the continued fraction expansion, first investigations
159(2)
5.2 ψ-mixing for the Gauss map and the Gauss problem
161(6)
5.3 Pointwise dual ergodicity for the Farey map
167(1)
5.4 Uniform and uniformly returning sets
168(5)
5.5 Finer asymptotics of Lebesgue measure of sum-level sets
173(4)
5.6 Uniform distribution of the even Stern--Brocot sequence
177(4)
5.7 Exercises
181(2)
Bibliography 183(5)
Index 188
Sara Munday, University of Bologna, Italy; Marc Kesseböhmer and Bernd Stratmann, University of Bremen, Germany.