Atnaujinkite slapukų nuostatas

El. knyga: Machine Learning in Clinical Neuroimaging: 7th International Workshop, MLCN 2024, Held in Conjunction with MICCAI 2024, Marrakesh, Morocco, October 10, 2024, Proceedings

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formatas: EPUB+DRM
  • Serija: Lecture Notes in Computer Science 15266
  • Išleidimo metai: 07-Dec-2024
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783031787614
  • Formatas: EPUB+DRM
  • Serija: Lecture Notes in Computer Science 15266
  • Išleidimo metai: 07-Dec-2024
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783031787614

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book constitutes the refereed proceedings of the 7th International Workshop on Machine Learning in Clinical Neuroimaging, MLCN 2024, held in Conjunction with MICCAI 2024 in Marrakesh, Morocco, on 10th October 2024. 





The 16 full papers presented in this volume were carefully reviewed and selected from 28 submissions. 





They are grouped into the following topics: machine learning; clinical applications.
.- Machine learning.

.- Parkinson's Disease Detection from Resting State EEG using Multi-Head
Graph  Structure Learning with Gradient Weighted Graph Attention
Explanations.

.- ProxiMO: Proximal Multi-Operator Networks for Quantitative Susceptibility
Mapping.

.- Brain-Cognition Fingerprinting via Graph-GCCA with Contrastive Learning.

.- HyperBrain: Anomaly Detection for Temporal Hypergraph Brain Networks.

.- SpaRG - Sparsely Reconstructed Graphs for Generalizable fMRI Analysis.

.- A Lightweight 3D Conditional Diffusion Model for Self-Explainable Brain
Age  Prediction in Adults and Children.

.- SOE: SO(3)-Equivariant 3D MRI Encoding.

.- Towards a foundation model for cortical folding.

.- Clinical Applications.

.- A Lesion-aware Edge-based Graph Neural Network for Predicting Language
Ability in  Patients with Post-stroke Aphasia.

.- DISARM: Disentangled Scanner-free Image Generation via Unsupervised
Image2Image 

Translation.

.- Segmenting Small Stroke Lesions with Novel Labeling Strategies.

.- A Progressive Single-Modality to Multi-Modality Classification Framework
for  Alzheimers Disease Sub-type Diagnosis.

.- Surface-based parcellation and vertex-wise analysis of ultra
high-resolution ex vivo 7  tesla MRI in Alzheimer's disease and related
dementias.

.- Self-Supervised Pre-training Tasks for an fMRI Time-series Transformer in
Autism  Detection.

.- Is Your Style Transfer Doing Anything Useful? An Investigation Into
Hippocampus  Segmentation and the Role of Preprocessing.

.- GAMing the Brain: Investigating the Cross-modal Relationships between
Functional  Connectivity and Structural Features using Generalized Additive
Models.