Preface |
|
xv | |
Part 1: Solar Cells - Fundamentals and Emerging Categories |
|
1 | (168) |
|
1 Introduction to Solar Energy Conversion |
|
|
3 | (30) |
|
|
|
|
|
|
3 | (2) |
|
|
5 | (1) |
|
|
6 | (1) |
|
1.4 Heat Transfer Principles |
|
|
7 | (1) |
|
|
7 | (1) |
|
|
7 | (1) |
|
|
7 | (1) |
|
1.5 Basic Laws of Radiation |
|
|
8 | (1) |
|
1.5.1 Stefan-Boltzmann Law |
|
|
8 | (1) |
|
|
9 | (1) |
|
1.5.3 Wien's Displacement Law |
|
|
9 | (1) |
|
1.6 Solar Energy Conversion |
|
|
9 | (2) |
|
1.6.1 Sources of Renewable and Non-Renewable Energy |
|
|
10 | (1) |
|
1.6.2 Differentiate Between Renewable and Non-Renewable Energy Sources |
|
|
10 | (1) |
|
1.7 Photo-Thermal Conversion System |
|
|
11 | (4) |
|
1.7.1 Flat Plate Collector |
|
|
11 | (4) |
|
1.7.2 Evacuated Solar Collector |
|
|
15 | (1) |
|
|
15 | (6) |
|
1.8.1 Solar Water Heating Systems |
|
|
17 | (3) |
|
|
20 | (1) |
|
|
21 | (4) |
|
1.9.1 Natural Circulation Methods |
|
|
23 | (2) |
|
1.9.2 Forced Circulation Systems |
|
|
25 | (1) |
|
1.10 Photovoltaic Conversion |
|
|
25 | (2) |
|
1.10.1 Photovoltaic Effect |
|
|
26 | (1) |
|
|
27 | (1) |
|
1.11 Photovoltaic Thermal Systems |
|
|
27 | (1) |
|
|
28 | (1) |
|
|
28 | (5) |
|
2 Development of Solar Cells |
|
|
33 | (14) |
|
|
|
|
|
33 | (1) |
|
|
34 | (1) |
|
2.2 First-Generation PV Cells |
|
|
34 | (2) |
|
2.2.1 Single-Crystalline PV Cells |
|
|
35 | (1) |
|
2.3 Second-Generation Solar PV Technology |
|
|
36 | (2) |
|
2.3.1 Amorphous Silicon PV Cell |
|
|
36 | (1) |
|
2.3.2 Cadmium Telluride PV Cell |
|
|
37 | (1) |
|
2.3.3 Copper Indium Gallium Diselenide PV Cells |
|
|
38 | (1) |
|
2.4 Third-Generation PV Cells |
|
|
38 | (6) |
|
2.4.1 Copper Zinc Tin Sulfide PV Cell |
|
|
40 | (1) |
|
2.4.2 Dye Sensitized PV Ccell |
|
|
40 | (2) |
|
|
42 | (1) |
|
2.4.4 Perovskite PV Solar Cells |
|
|
43 | (1) |
|
2.4.5 Polymer Photovoltaic Cell |
|
|
43 | (1) |
|
2.4.6 Quantum Dot Photovoltaic Cell |
|
|
43 | (1) |
|
|
44 | (1) |
|
|
45 | (2) |
|
3 Recycling of Solar Panels |
|
|
47 | (40) |
|
Sathish Kumar Palaniappan |
|
|
|
|
|
|
48 | (1) |
|
|
49 | (3) |
|
3.2 PV and Recycling Development Worldwide |
|
|
52 | (3) |
|
3.2.1 Causes of Inability in Solar PV Panel |
|
|
54 | (1) |
|
3.3 Current Recycling and Recovery Techniques |
|
|
55 | (8) |
|
3.3.1 Methods for Recycling |
|
|
55 | (1) |
|
3.3.2 Physical Separation |
|
|
55 | (1) |
|
3.3.3 Thermal and Chemical-Based Treatment |
|
|
56 | (7) |
|
3.4 Strategies for Recycling Processes |
|
|
63 | (2) |
|
3.5 Approaches for Recycling of Solar Panel |
|
|
65 | (6) |
|
|
66 | (1) |
|
|
66 | (2) |
|
3.5.3 Decomposition of Silicon and Precious Industrial Minerals From Modules |
|
|
68 | (3) |
|
3.6 Global Surveys in PV Recycling Technology |
|
|
71 | (5) |
|
3.7 Ecological and Economic Impacts |
|
|
76 | (2) |
|
3.7.1 Evolutionary Factors |
|
|
77 | (1) |
|
3.7.2 Socio-Economic Concerns |
|
|
77 | (1) |
|
|
78 | (1) |
|
|
79 | (8) |
|
4 Multi-Junction Solar Cells |
|
|
87 | (20) |
|
|
|
|
|
87 | (1) |
|
|
88 | (3) |
|
4.1.1 Theory of Multi-Junction Cells |
|
|
89 | (2) |
|
4.2 Key Issues for Realizing the Efficiency of MJCs |
|
|
91 | (2) |
|
4.2.1 Preference of Top Layer Materials and Enhancing the Quality |
|
|
91 | (1) |
|
4.2.2 Low-Loss Tunneling Junction for Intercell Connection and Preventing Impurity Diffusion From Tunneling Junction |
|
|
92 | (1) |
|
4.2.3 Lattice-Matching Between Cell Materials and Substrates |
|
|
92 | (1) |
|
4.2.4 Effectiveness of Wide-Bandgap Back Surface Field (BSF) Layer |
|
|
92 | (1) |
|
4.3 Structure of Multi-Junction Cell |
|
|
93 | (5) |
|
4.3.1 Multi-Junction Cell With BSF Layer |
|
|
96 | (2) |
|
4.3.2 Optimization of BSF Layers |
|
|
98 | (1) |
|
4.4 Novel Materials for Multi-Junction Cells |
|
|
98 | (2) |
|
|
100 | (2) |
|
|
102 | (1) |
|
|
102 | (5) |
|
|
107 | (26) |
|
|
|
|
|
|
108 | (4) |
|
5.2 Structure and Working |
|
|
112 | (3) |
|
5.3 Fabrication of Simple Perovskite Solar Cell |
|
|
115 | (2) |
|
|
117 | (7) |
|
|
122 | (1) |
|
|
122 | (1) |
|
|
122 | (1) |
|
|
123 | (1) |
|
|
123 | (1) |
|
|
123 | (1) |
|
5.4.7 Vapor-Phase Deposition |
|
|
123 | (1) |
|
5.5 Stability of Perovskite Solar Cell |
|
|
124 | (1) |
|
5.6 Losses in Solar Cells |
|
|
124 | (2) |
|
|
126 | (1) |
|
|
127 | (6) |
|
6 Natural Dye-Sensitized Solar Cells |
|
|
133 | (36) |
|
|
|
|
|
|
134 | (1) |
|
|
134 | (1) |
|
6.2 Dye-Sensitized Solar Cells (DSSCs) |
|
|
135 | (3) |
|
6.2.1 The Structure and Operation Principle |
|
|
136 | (1) |
|
6.2.2 Performance Parameters of DSSCs |
|
|
137 | (1) |
|
6.2.2.1 Open Circuit Voltage |
|
|
138 | (1) |
|
6.2.2.2 Short Circuit Current |
|
|
138 | (1) |
|
|
138 | (1) |
|
|
138 | (1) |
|
6.3 Dye (Photosensitizer) |
|
|
138 | (24) |
|
|
139 | (7) |
|
|
146 | (1) |
|
|
146 | (1) |
|
|
147 | (1) |
|
|
147 | (1) |
|
|
147 | (1) |
|
6.3.3 Photoconversion Efficiency of Natural Dyes Employed as Dye Sensitizers-Notable Studies |
|
|
148 | (14) |
|
|
162 | (1) |
|
|
162 | (7) |
Part 2: Materials, Methods and Applications |
|
169 | (210) |
|
7 Organic Materials and Their Processing Techniques |
|
|
171 | (18) |
|
|
|
|
Harikrishnakumar Mohan Kumar |
|
|
|
172 | (1) |
|
|
173 | (5) |
|
|
174 | (1) |
|
7.2.2 Challenges in Organic Solar Cells |
|
|
174 | (1) |
|
7.2.3 Focus Area to Overcome the Challenges |
|
|
174 | (1) |
|
7.2.4 Operation of Organic Solar Cells |
|
|
174 | (2) |
|
7.2.5 Organic Solar Cell Device Architecture |
|
|
176 | (1) |
|
7.2.5.1 Single Active-Layer Device |
|
|
176 | (1) |
|
7.2.5.2 Double Active-Layer Device |
|
|
176 | (1) |
|
7.2.5.3 Bulk Heterojunction Photovoltaic Cell |
|
|
177 | (1) |
|
7.3 Electrical Characteristics of OPVs |
|
|
178 | (2) |
|
7.3.1 Open-Circuit Voltage |
|
|
178 | (1) |
|
7.3.2 Short-Circuit Current |
|
|
179 | (1) |
|
7.3.3 Maximum Power Point |
|
|
179 | (1) |
|
|
179 | (1) |
|
7.3.5 Power Conversion Efficiency |
|
|
179 | (1) |
|
|
180 | (1) |
|
7.4 Potential Materials for OPV Applications |
|
|
180 | (4) |
|
7.4.1 Electron-Donor Materials |
|
|
180 | (3) |
|
7.4.2 Electron-Acceptor Materials |
|
|
183 | (1) |
|
|
184 | (1) |
|
|
185 | (4) |
|
8 Inorganic Materials and Their Processing Techniques |
|
|
189 | (38) |
|
|
|
Harikrishnakumar Mohan Kumar |
|
|
|
190 | (1) |
|
8.2 Functional Inorganic Materials |
|
|
191 | (1) |
|
8.3 Comprehensive Processing Strategy |
|
|
192 | (2) |
|
8.4 Solid-Phase Processing |
|
|
194 | (8) |
|
|
194 | (1) |
|
8.4.2 Microwave Technique |
|
|
195 | (1) |
|
8.4.3 Combustion Synthesis |
|
|
196 | (1) |
|
8.4.4 Mechanochemical Synthesis |
|
|
197 | (1) |
|
8.4.5 Carbothermal Reduction |
|
|
198 | (1) |
|
8.4.6 Friction Consolidation |
|
|
199 | (1) |
|
8.4.7 3D Printing Technique |
|
|
200 | (1) |
|
8.4.8 Nanolithography Technique |
|
|
201 | (1) |
|
8.5 Solution-Phase Processing |
|
|
202 | (11) |
|
|
202 | (1) |
|
8.5.2 Hydrothermal and Solvothermal Process |
|
|
203 | (1) |
|
8.5.3 Sonochemical Synthesis |
|
|
204 | (2) |
|
8.5.4 Surface Coating Technique |
|
|
206 | (1) |
|
8.5.5 Spray Pyrolysis Technique |
|
|
207 | (1) |
|
8.5.6 Electroplating and Electrodeposition Process |
|
|
208 | (1) |
|
8.5.7 Liquid Printing Technique |
|
|
209 | (1) |
|
8.5.8 Liquid-Phase Laser Ablation Technique |
|
|
210 | (2) |
|
8.5.9 Electrospinning and Electrospraying Technique |
|
|
212 | (1) |
|
|
213 | (8) |
|
8.6.1 Physical Vapor Deposition Technique |
|
|
213 | (2) |
|
8.6.2 Chemical Vapor Deposition Technique |
|
|
215 | (1) |
|
8.6.3 Inert Gas Condensation Technique |
|
|
216 | (2) |
|
8.6.4 Molecular Beam Epitaxy Technique |
|
|
218 | (1) |
|
8.6.5 Gas-Phase Flame Spray Pyrolysis |
|
|
219 | (2) |
|
8.7 Challenges in Nanomaterial Production and Processing |
|
|
221 | (1) |
|
8.8 Conclusion and Perspectives |
|
|
222 | (1) |
|
|
222 | (5) |
|
9 2D Materials for Solar Cell Applications |
|
|
227 | (42) |
|
|
|
|
|
|
|
228 | (3) |
|
9.2 Fundamental Principles of Solar Cell |
|
|
231 | (3) |
|
9.3 Fabrication Methods for the Generation of Solar Cell |
|
|
234 | (8) |
|
|
234 | (3) |
|
|
237 | (1) |
|
|
238 | (1) |
|
|
238 | (2) |
|
9.3.5 Vacuum Deposition/Chemical Vapor Deposition |
|
|
240 | (1) |
|
|
241 | (1) |
|
9.4 Introduction to 2D Materials |
|
|
242 | (4) |
|
|
242 | (2) |
|
|
244 | (1) |
|
9.4.3 Molybdenum Disulfide |
|
|
244 | (1) |
|
|
245 | (1) |
|
|
246 | (1) |
|
9.5 Solar Cell Application of 2D Materials |
|
|
246 | (10) |
|
9.5.1 2D Materials for Organic Solar Cells |
|
|
246 | (3) |
|
9.5.2 2D Materials for Perovskite Solar Cells |
|
|
249 | (2) |
|
9.5.3 2D Materials for Dye-Sensitized Solar Cells (DSSCs) |
|
|
251 | (4) |
|
9.5.4 2D Materials for Other Solar Cell |
|
|
255 | (1) |
|
|
256 | (1) |
|
|
257 | (12) |
|
10 Nanostructured Materials and Their Processing Techniques |
|
|
269 | (30) |
|
|
|
|
|
|
|
269 | (1) |
|
10.2 The Need for Solar Energy |
|
|
270 | (3) |
|
10.2.1 Solar Photovoltaic Cell |
|
|
271 | (1) |
|
10.2.2 Solar Thermal Heating |
|
|
272 | (1) |
|
10.3 Nanoscience and Nanotechnology |
|
|
273 | (1) |
|
10.4 Nanotechnology in Solar Energy |
|
|
273 | (3) |
|
|
274 | (1) |
|
10.4.2 Properties of Nanomaterials |
|
|
275 | (1) |
|
|
275 | (1) |
|
10.5 The Outlook of Nanomaterials in the Performance of Solar Cells |
|
|
276 | (1) |
|
10.6 Photovoltaic-Based Nanomaterials and Synthesis Techniques |
|
|
277 | (13) |
|
|
278 | (2) |
|
10.6.2 Hydrothermal Method |
|
|
280 | (1) |
|
10.6.3 Solvothermal Technique |
|
|
281 | (2) |
|
10.6.4 Co-Precipitation Technique |
|
|
283 | (1) |
|
10.6.5 Magnetron Sputtering |
|
|
284 | (2) |
|
|
286 | (1) |
|
10.6.7 Chemical Vapor Deposition Technique |
|
|
287 | (1) |
|
10.6.7.1 Atmospheric Pressure Chemical Vapor Deposition Method |
|
|
289 | (1) |
|
10.6.7.2 Plasma-Enhanced Vapor Deposition Method |
|
|
290 | (1) |
|
10.7 Nanofluids in Solar Collectors |
|
|
290 | (2) |
|
10.8 Nanofluids in Solar Stills |
|
|
292 | (1) |
|
|
293 | (1) |
|
|
293 | (6) |
|
11 Coating Materials, Methods, and Techniques |
|
|
299 | (24) |
|
|
|
|
Sathish Kumar Palaniappan |
|
|
|
300 | (1) |
|
11.2 Thin Film Deposition Techniques |
|
|
301 | (1) |
|
11.2.1 Advantages of Thin Films |
|
|
301 | (1) |
|
11.3 Anti-Reflection Thin Films |
|
|
302 | (1) |
|
11.4 Methods of Thin Film Growth |
|
|
303 | (5) |
|
11.4.1 Physical Vapor Deposition |
|
|
304 | (1) |
|
11.4.2 Thermal Evaporation Process |
|
|
304 | (1) |
|
11.4.3 Pulsed Laser Deposition |
|
|
304 | (1) |
|
11.4.4 Sputter Deposition |
|
|
304 | (1) |
|
11.4.5 Chemical Vapor Deposition |
|
|
305 | (1) |
|
11.4.6 Plasma-Enhanced CVD Method |
|
|
305 | (1) |
|
11.4.7 Electrochemical Deposition |
|
|
305 | (1) |
|
11.4.8 Sol-Gel Thin Film Formation |
|
|
306 | (2) |
|
11.5 Thin Film Characterization |
|
|
308 | (9) |
|
|
308 | (1) |
|
11.5.2 Fourier Transform Infrared Spectroscopy |
|
|
309 | (1) |
|
11.5.3 Thermogravimetry and Differential Thermal Analysis |
|
|
310 | (1) |
|
11.5.4 UV-Visible Spectroscopy |
|
|
311 | (1) |
|
11.5.5 Field Emission Scanning Electron Microscope |
|
|
312 | (2) |
|
11.5.6 High-Resolution Transmission Electron Microscope |
|
|
314 | (1) |
|
11.5.7 Atomic Force Microscopy |
|
|
314 | (3) |
|
11.5.8 Four-Probe Technique |
|
|
317 | (1) |
|
11.6 Performance Analysis of ARC Coated Solar Cells |
|
|
317 | (3) |
|
|
320 | (1) |
|
|
320 | (3) |
|
12 Anti-Reflection Coating |
|
|
323 | (30) |
|
|
|
|
|
|
324 | (2) |
|
12.2 Anti-Reflection Coating |
|
|
326 | (5) |
|
12.2.1 Types of Anti-Reflection Coating |
|
|
329 | (1) |
|
|
330 | (1) |
|
12.2.3 Anti-Reflection Coating With Self-Cleaning |
|
|
331 | (1) |
|
12.3 Perspectives on ARC Materials |
|
|
331 | (3) |
|
12.3.1 Silicon-Based Material |
|
|
332 | (1) |
|
12.3.2 Ti02-Based Material |
|
|
332 | (1) |
|
12.3.3 Carbon-Based Material |
|
|
333 | (1) |
|
12.3.4 Gallium-Based Material |
|
|
333 | (1) |
|
12.3.5 Polymer-Based Material |
|
|
333 | (1) |
|
12.3.6 Organic-Based Material |
|
|
334 | (1) |
|
12.4 Techniques for Coating ARC |
|
|
334 | (9) |
|
|
334 | (1) |
|
12.4.1.1 Spin Coating Technique |
|
|
334 | (1) |
|
12.4.1.2 Dip Coating Technique |
|
|
335 | (1) |
|
12.4.1.3 Meniscus Coating Technique |
|
|
336 | (1) |
|
12.4.2 Physical Vapor Deposition |
|
|
337 | (1) |
|
12.4.2.1 Thermal Evaporation Technique |
|
|
337 | (1) |
|
12.4.2.2 Electron Beam Technique |
|
|
338 | (1) |
|
12.4.3 RF and DC Magnetron Sputtering Technique |
|
|
338 | (1) |
|
12.4.4 Chemical Vapor Deposition |
|
|
339 | (1) |
|
12.4.5 Electrospinning Technique |
|
|
339 | (2) |
|
12.4.6 Spray Pyrolysis Technique |
|
|
341 | (1) |
|
|
341 | (1) |
|
12.4.8 Comparison of Coating Techniques |
|
|
342 | (1) |
|
12.5 Literature Studies: Impact of ARC on Performance of Solar Cell |
|
|
343 | (2) |
|
|
345 | (1) |
|
|
346 | (7) |
|
13 Thermal Energy Storage and Its Applications |
|
|
353 | (26) |
|
|
Sathish Kumar Palaniappan |
|
|
|
|
|
|
354 | (1) |
|
|
354 | (3) |
|
|
354 | (1) |
|
13.2.1.1 Flywheel Storage |
|
|
355 | (1) |
|
13.2.1.2 Pumped Water Storage |
|
|
355 | (1) |
|
13.2.1.3 Compressed Air Storage |
|
|
355 | (1) |
|
13.2.2 Electrochemical ES |
|
|
355 | (1) |
|
13.2.3 Thermal Energy Storage |
|
|
356 | (1) |
|
|
356 | (1) |
|
|
357 | (5) |
|
13.3.1 Sensible Heat Storage |
|
|
357 | (1) |
|
13.3.1.1 Properties of SHS Materials |
|
|
357 | (1) |
|
13.3.2 Latent Heat Storage |
|
|
358 | (1) |
|
13.3.2.1 Properties of LHS Materials or PCMs |
|
|
359 | (1) |
|
13.3.2.2 Classification of PCMs |
|
|
359 | (3) |
|
|
362 | (1) |
|
|
362 | (12) |
|
|
362 | (1) |
|
|
362 | (1) |
|
13.4.1.2 Solar Water Heating |
|
|
363 | (1) |
|
13.4.1.3 Packed Rock Bed Storage |
|
|
363 | (2) |
|
13.4.2 Latent Heat Storage Applications |
|
|
365 | (1) |
|
13.4.2.1 Encapsulation of PCM |
|
|
365 | (1) |
|
13.4.2.2 Solar Water Heater With LHS |
|
|
367 | (1) |
|
13.4.2.3 TES for Building Application |
|
|
367 | (1) |
|
13.4.2.4 Numerical Studies on TES |
|
|
370 | (4) |
|
|
374 | (1) |
|
|
375 | (4) |
Index |
|
379 | |