Atnaujinkite slapukų nuostatas

El. knyga: Materials for Solar Energy Conversion: Materials, Methods and Applications

Edited by (Kongu Engineering College (An Autonomous Institution under Anna University), Tamilnadu, India), Edited by (Kongu Engineering College (An Autonomous Institution under Anna University), Tamilnadu, India), Edited by (Kongu Engineering College (An Autonomous)
  • Formatas: EPUB+DRM
  • Išleidimo metai: 26-Oct-2021
  • Leidėjas: Wiley-Scrivener
  • Kalba: eng
  • ISBN-13: 9781119752172
Kitos knygos pagal šią temą:
  • Formatas: EPUB+DRM
  • Išleidimo metai: 26-Oct-2021
  • Leidėjas: Wiley-Scrivener
  • Kalba: eng
  • ISBN-13: 9781119752172
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

MATERIALS FOR SOLAR ENERGY CONVERSION

This book provides professionals and students with a resource on the basic principles and applications of solar energy materials and processes, as well as practicing engineers who want to understand how functional materials operate in solar energy conversion systems.

The demand for energy is increasing daily, and the development of sustainable power generation is a critical issue. In order to overcome the energy demand, power generation through solar energy is booming. Many research works have attempted to enhance the efficiency of collection and storage of solar energy and, as a result, numerous advanced functional materials have been developed for enhancing the performance of solar cells.

This book has compiled and broadly explores the latest developments of materials, methods, and applications of solar energy. The book is divided into 2 parts, in which the first part deals with solar cell fundamentals and emerging categories, and the latter part deals with materials, methods, and applications in order to fill the gap between existing technologies and practical requirements. The book presents detailed chapters including organic, inorganic, coating materials, and collectors. The use of modern computer simulation techniques, conversion and storage processes are effectively covered. Topics such as nanostructured solar cells, battery materials, etc. are included in this book as well.

Audience The book is aimed at researchers in materials science, chemistry, physics, electrical and mechanical engineering working in the fields of nanotechnology, photovoltaic device technology, and solar energy.

Preface xv
Part 1: Solar Cells - Fundamentals and Emerging Categories 1(168)
1 Introduction to Solar Energy Conversion
3(30)
Manivannan Rajendran
Moganapriya Chinnasamy
Suresh Muthusamy
Manikandan Kumaran Nair
1.1 Introduction
3(2)
1.2 Forms of Energy
5(1)
1.3 Solar Radiation
6(1)
1.4 Heat Transfer Principles
7(1)
1.4.1 Conduction
7(1)
1.4.2 Convection
7(1)
1.4.3 Radiation
7(1)
1.5 Basic Laws of Radiation
8(1)
1.5.1 Stefan-Boltzmann Law
8(1)
1.5.2 Planck's Law
9(1)
1.5.3 Wien's Displacement Law
9(1)
1.6 Solar Energy Conversion
9(2)
1.6.1 Sources of Renewable and Non-Renewable Energy
10(1)
1.6.2 Differentiate Between Renewable and Non-Renewable Energy Sources
10(1)
1.7 Photo-Thermal Conversion System
11(4)
1.7.1 Flat Plate Collector
11(4)
1.7.2 Evacuated Solar Collector
15(1)
1.8 Thermal Applications
15(6)
1.8.1 Solar Water Heating Systems
17(3)
1.8.2 Steam Generation
20(1)
1.9 Solar Drying
21(4)
1.9.1 Natural Circulation Methods
23(2)
1.9.2 Forced Circulation Systems
25(1)
1.10 Photovoltaic Conversion
25(2)
1.10.1 Photovoltaic Effect
26(1)
1.10.2 Applications
27(1)
1.11 Photovoltaic Thermal Systems
27(1)
1.12 Conclusion
28(1)
References
28(5)
2 Development of Solar Cells
33(14)
Mohan Kumar Anand Raj
Rajasekar Rathanasamy
Moganapriya Chinnasamy
Abbreviations
33(1)
2.1 Introduction
34(1)
2.2 First-Generation PV Cells
34(2)
2.2.1 Single-Crystalline PV Cells
35(1)
2.3 Second-Generation Solar PV Technology
36(2)
2.3.1 Amorphous Silicon PV Cell
36(1)
2.3.2 Cadmium Telluride PV Cell
37(1)
2.3.3 Copper Indium Gallium Diselenide PV Cells
38(1)
2.4 Third-Generation PV Cells
38(6)
2.4.1 Copper Zinc Tin Sulfide PV Cell
40(1)
2.4.2 Dye Sensitized PV Ccell
40(2)
2.4.3 Organic PV Cell
42(1)
2.4.4 Perovskite PV Solar Cells
43(1)
2.4.5 Polymer Photovoltaic Cell
43(1)
2.4.6 Quantum Dot Photovoltaic Cell
43(1)
2.5 Conclusion
44(1)
References
45(2)
3 Recycling of Solar Panels
47(40)
Sathish Kumar Palaniappan
Moganapriya Chinnasamy
Rajasekar Rathanasamy
Samir Kumar Pal
Abbreviations
48(1)
3.1 Introduction
49(3)
3.2 PV and Recycling Development Worldwide
52(3)
3.2.1 Causes of Inability in Solar PV Panel
54(1)
3.3 Current Recycling and Recovery Techniques
55(8)
3.3.1 Methods for Recycling
55(1)
3.3.2 Physical Separation
55(1)
3.3.3 Thermal and Chemical-Based Treatment
56(7)
3.4 Strategies for Recycling Processes
63(2)
3.5 Approaches for Recycling of Solar Panel
65(6)
3.5.1 Component Repair
66(1)
3.5.2 Module Separation
66(2)
3.5.3 Decomposition of Silicon and Precious Industrial Minerals From Modules
68(3)
3.6 Global Surveys in PV Recycling Technology
71(5)
3.7 Ecological and Economic Impacts
76(2)
3.7.1 Evolutionary Factors
77(1)
3.7.2 Socio-Economic Concerns
77(1)
3.8 Conclusion
78(1)
References
79(8)
4 Multi-Junction Solar Cells
87(20)
Mohanraj Thangamuthu
Tamilvanan Ayyasamy
Santhosh Sivaraj
Abbreviation
87(1)
4.1 Introduction
88(3)
4.1.1 Theory of Multi-Junction Cells
89(2)
4.2 Key Issues for Realizing the Efficiency of MJCs
91(2)
4.2.1 Preference of Top Layer Materials and Enhancing the Quality
91(1)
4.2.2 Low-Loss Tunneling Junction for Intercell Connection and Preventing Impurity Diffusion From Tunneling Junction
92(1)
4.2.3 Lattice-Matching Between Cell Materials and Substrates
92(1)
4.2.4 Effectiveness of Wide-Bandgap Back Surface Field (BSF) Layer
92(1)
4.3 Structure of Multi-Junction Cell
93(5)
4.3.1 Multi-Junction Cell With BSF Layer
96(2)
4.3.2 Optimization of BSF Layers
98(1)
4.4 Novel Materials for Multi-Junction Cells
98(2)
4.5 Applications
100(2)
4.6 Conclusions
102(1)
References
102(5)
5 Perovskite Solar Cells
107(26)
Santhosh Sivaraj
Rajasekar Rathanasamy
Gobinath Velu Kaliyannan
Mugilan Thanigachalam
5.1 Introduction
108(4)
5.2 Structure and Working
112(3)
5.3 Fabrication of Simple Perovskite Solar Cell
115(2)
5.4 Fabrication Methods
117(7)
5.4.1 Spin Coating
122(1)
5.4.2 Blade Coating
122(1)
5.4.3 Slot-Die Coating
122(1)
5.4.4 Inkjet Printing
123(1)
5.4.5 Screen Printing
123(1)
5.4.6 Electrodeposition
123(1)
5.4.7 Vapor-Phase Deposition
123(1)
5.5 Stability of Perovskite Solar Cell
124(1)
5.6 Losses in Solar Cells
124(2)
5.7 Conclusion
126(1)
References
127(6)
6 Natural Dye-Sensitized Solar Cells
133(36)
Viswapriya Shanmugam
Rajasekar Rathanasamy
Saratha Raman
Abbas Ganesan
Abbreviations
134(1)
6.1 Introduction
134(1)
6.2 Dye-Sensitized Solar Cells (DSSCs)
135(3)
6.2.1 The Structure and Operation Principle
136(1)
6.2.2 Performance Parameters of DSSCs
137(1)
6.2.2.1 Open Circuit Voltage
138(1)
6.2.2.2 Short Circuit Current
138(1)
6.2.2.3 Fill Factor
138(1)
6.2.2.4 Efficiency
138(1)
6.3 Dye (Photosensitizer)
138(24)
6.3.1 Natural Dyes
139(7)
6.3.2 Plant Pigments
146(1)
6.3.2.1 Anthocyanin
146(1)
6.3.2.2 Chlorophylls
147(1)
6.3.2.3 Betalain
147(1)
6.3.2.4 Carotenoids
147(1)
6.3.3 Photoconversion Efficiency of Natural Dyes Employed as Dye Sensitizers-Notable Studies
148(14)
6.4 Conclusion
162(1)
References
162(7)
Part 2: Materials, Methods and Applications 169(210)
7 Organic Materials and Their Processing Techniques
171(18)
Raja Gunasekaran
Gobinath Velu Kaliyannan
Saravanakumar Jaganathan
Harikrishnakumar Mohan Kumar
7.1 Introduction
172(1)
7.2 Organic Materials
173(5)
7.2.1 Organic Solar Cell
174(1)
7.2.2 Challenges in Organic Solar Cells
174(1)
7.2.3 Focus Area to Overcome the Challenges
174(1)
7.2.4 Operation of Organic Solar Cells
174(2)
7.2.5 Organic Solar Cell Device Architecture
176(1)
7.2.5.1 Single Active-Layer Device
176(1)
7.2.5.2 Double Active-Layer Device
176(1)
7.2.5.3 Bulk Heterojunction Photovoltaic Cell
177(1)
7.3 Electrical Characteristics of OPVs
178(2)
7.3.1 Open-Circuit Voltage
178(1)
7.3.2 Short-Circuit Current
179(1)
7.3.3 Maximum Power Point
179(1)
7.3.4 Fill Factor
179(1)
7.3.5 Power Conversion Efficiency
179(1)
7.3.6 Quantum Efficiency
180(1)
7.4 Potential Materials for OPV Applications
180(4)
7.4.1 Electron-Donor Materials
180(3)
7.4.2 Electron-Acceptor Materials
183(1)
7.5 Conclusion
184(1)
References
185(4)
8 Inorganic Materials and Their Processing Techniques
189(38)
Manivasakan Palanisamy
Gobinath Velu Kaliyannan
Harikrishnakumar Mohan Kumar
8.1 Introduction
190(1)
8.2 Functional Inorganic Materials
191(1)
8.3 Comprehensive Processing Strategy
192(2)
8.4 Solid-Phase Processing
194(8)
8.4.1 Ceramic Method
194(1)
8.4.2 Microwave Technique
195(1)
8.4.3 Combustion Synthesis
196(1)
8.4.4 Mechanochemical Synthesis
197(1)
8.4.5 Carbothermal Reduction
198(1)
8.4.6 Friction Consolidation
199(1)
8.4.7 3D Printing Technique
200(1)
8.4.8 Nanolithography Technique
201(1)
8.5 Solution-Phase Processing
202(11)
8.5.1 Sol-Gel Process
202(1)
8.5.2 Hydrothermal and Solvothermal Process
203(1)
8.5.3 Sonochemical Synthesis
204(2)
8.5.4 Surface Coating Technique
206(1)
8.5.5 Spray Pyrolysis Technique
207(1)
8.5.6 Electroplating and Electrodeposition Process
208(1)
8.5.7 Liquid Printing Technique
209(1)
8.5.8 Liquid-Phase Laser Ablation Technique
210(2)
8.5.9 Electrospinning and Electrospraying Technique
212(1)
8.6 Gas-Phase Processing
213(8)
8.6.1 Physical Vapor Deposition Technique
213(2)
8.6.2 Chemical Vapor Deposition Technique
215(1)
8.6.3 Inert Gas Condensation Technique
216(2)
8.6.4 Molecular Beam Epitaxy Technique
218(1)
8.6.5 Gas-Phase Flame Spray Pyrolysis
219(2)
8.7 Challenges in Nanomaterial Production and Processing
221(1)
8.8 Conclusion and Perspectives
222(1)
References
222(5)
9 2D Materials for Solar Cell Applications
227(42)
Shrabani De
Sourav Acharya
Sumanta Sahoo
Ashok Kumar Das
Ganesh Chandra Nayak
9.1 Introduction
228(3)
9.2 Fundamental Principles of Solar Cell
231(3)
9.3 Fabrication Methods for the Generation of Solar Cell
234(8)
9.3.1 Spin Coating
234(3)
9.3.2 Spray Coating
237(1)
9.3.3 Doctor Blading
238(1)
9.3.4 Slot-Die Coating
238(2)
9.3.5 Vacuum Deposition/Chemical Vapor Deposition
240(1)
9.3.6 Screen Printing
241(1)
9.4 Introduction to 2D Materials
242(4)
9.4.1 Graphene
242(2)
9.4.2 Boron Nitride
244(1)
9.4.3 Molybdenum Disulfide
244(1)
9.4.4 MXenes
245(1)
9.4.5 Other 2D Materials
246(1)
9.5 Solar Cell Application of 2D Materials
246(10)
9.5.1 2D Materials for Organic Solar Cells
246(3)
9.5.2 2D Materials for Perovskite Solar Cells
249(2)
9.5.3 2D Materials for Dye-Sensitized Solar Cells (DSSCs)
251(4)
9.5.4 2D Materials for Other Solar Cell
255(1)
9.6 Conclusions
256(1)
References
257(12)
10 Nanostructured Materials and Their Processing Techniques
269(30)
Tamilvanan Ayyasamy
Abubakkar Abdul Jaffar
Selvakumar Pandiyaraj
Mohanraj Thangamuthu
Thangavel Palaniappan
10.1 Introduction
269(1)
10.2 The Need for Solar Energy
270(3)
10.2.1 Solar Photovoltaic Cell
271(1)
10.2.2 Solar Thermal Heating
272(1)
10.3 Nanoscience and Nanotechnology
273(1)
10.4 Nanotechnology in Solar Energy
273(3)
10.4.1 Nanomaterials
274(1)
10.4.2 Properties of Nanomaterials
275(1)
10.4.3 Nanofluids
275(1)
10.5 The Outlook of Nanomaterials in the Performance of Solar Cells
276(1)
10.6 Photovoltaic-Based Nanomaterials and Synthesis Techniques
277(13)
10.6.1 Sol-Gel Method
278(2)
10.6.2 Hydrothermal Method
280(1)
10.6.3 Solvothermal Technique
281(2)
10.6.4 Co-Precipitation Technique
283(1)
10.6.5 Magnetron Sputtering
284(2)
10.6.6 Spin Coating
286(1)
10.6.7 Chemical Vapor Deposition Technique
287(1)
10.6.7.1 Atmospheric Pressure Chemical Vapor Deposition Method
289(1)
10.6.7.2 Plasma-Enhanced Vapor Deposition Method
290(1)
10.7 Nanofluids in Solar Collectors
290(2)
10.8 Nanofluids in Solar Stills
292(1)
10.9 Conclusion
293(1)
References
293(6)
11 Coating Materials, Methods, and Techniques
299(24)
Gobinath Velu Kaliyannan
Raja Gunasekaran
Manju Sri Anbupalani
Sathish Kumar Palaniappan
11.1 Introduction
300(1)
11.2 Thin Film Deposition Techniques
301(1)
11.2.1 Advantages of Thin Films
301(1)
11.3 Anti-Reflection Thin Films
302(1)
11.4 Methods of Thin Film Growth
303(5)
11.4.1 Physical Vapor Deposition
304(1)
11.4.2 Thermal Evaporation Process
304(1)
11.4.3 Pulsed Laser Deposition
304(1)
11.4.4 Sputter Deposition
304(1)
11.4.5 Chemical Vapor Deposition
305(1)
11.4.6 Plasma-Enhanced CVD Method
305(1)
11.4.7 Electrochemical Deposition
305(1)
11.4.8 Sol-Gel Thin Film Formation
306(2)
11.5 Thin Film Characterization
308(9)
11.5.1 X-ray Diffraction
308(1)
11.5.2 Fourier Transform Infrared Spectroscopy
309(1)
11.5.3 Thermogravimetry and Differential Thermal Analysis
310(1)
11.5.4 UV-Visible Spectroscopy
311(1)
11.5.5 Field Emission Scanning Electron Microscope
312(2)
11.5.6 High-Resolution Transmission Electron Microscope
314(1)
11.5.7 Atomic Force Microscopy
314(3)
11.5.8 Four-Probe Technique
317(1)
11.6 Performance Analysis of ARC Coated Solar Cells
317(3)
11.7 Conclusion
320(1)
References
320(3)
12 Anti-Reflection Coating
323(30)
Ragavendran Asokan
Rajasekar Rathanasamy
Saravanakumar Jaganathan
Mohan Kumar Anand Raj
12.1 Introduction
324(2)
12.2 Anti-Reflection Coating
326(5)
12.2.1 Types of Anti-Reflection Coating
329(1)
12.2.2 Textured Coating
330(1)
12.2.3 Anti-Reflection Coating With Self-Cleaning
331(1)
12.3 Perspectives on ARC Materials
331(3)
12.3.1 Silicon-Based Material
332(1)
12.3.2 Ti02-Based Material
332(1)
12.3.3 Carbon-Based Material
333(1)
12.3.4 Gallium-Based Material
333(1)
12.3.5 Polymer-Based Material
333(1)
12.3.6 Organic-Based Material
334(1)
12.4 Techniques for Coating ARC
334(9)
12.4.1 Sol-Gel Technique
334(1)
12.4.1.1 Spin Coating Technique
334(1)
12.4.1.2 Dip Coating Technique
335(1)
12.4.1.3 Meniscus Coating Technique
336(1)
12.4.2 Physical Vapor Deposition
337(1)
12.4.2.1 Thermal Evaporation Technique
337(1)
12.4.2.2 Electron Beam Technique
338(1)
12.4.3 RF and DC Magnetron Sputtering Technique
338(1)
12.4.4 Chemical Vapor Deposition
339(1)
12.4.5 Electrospinning Technique
339(2)
12.4.6 Spray Pyrolysis Technique
341(1)
12.4.7 Lithography
341(1)
12.4.8 Comparison of Coating Techniques
342(1)
12.5 Literature Studies: Impact of ARC on Performance of Solar Cell
343(2)
12.6 Conclusion
345(1)
References
346(7)
13 Thermal Energy Storage and Its Applications
353(26)
Veerakumar Chinnasamy
Sathish Kumar Palaniappan
Mohan Kumar Anand Raj
Manivannan Rajendran
Honghyun Cho
13.1 Introduction
354(1)
13.2 Types of ES
354(3)
13.2.1 Mechanical ES
354(1)
13.2.1.1 Flywheel Storage
355(1)
13.2.1.2 Pumped Water Storage
355(1)
13.2.1.3 Compressed Air Storage
355(1)
13.2.2 Electrochemical ES
355(1)
13.2.3 Thermal Energy Storage
356(1)
13.2.4 Advantages of TES
356(1)
13.3 Methods of TES
357(5)
13.3.1 Sensible Heat Storage
357(1)
13.3.1.1 Properties of SHS Materials
357(1)
13.3.2 Latent Heat Storage
358(1)
13.3.2.1 Properties of LHS Materials or PCMs
359(1)
13.3.2.2 Classification of PCMs
359(3)
13.3.3 Thermochemical ES
362(1)
13.4 Applications of TES
362(12)
13.4.1 SHS Applications
362(1)
13.4.1.1 Solar Pond
362(1)
13.4.1.2 Solar Water Heating
363(1)
13.4.1.3 Packed Rock Bed Storage
363(2)
13.4.2 Latent Heat Storage Applications
365(1)
13.4.2.1 Encapsulation of PCM
365(1)
13.4.2.2 Solar Water Heater With LHS
367(1)
13.4.2.3 TES for Building Application
367(1)
13.4.2.4 Numerical Studies on TES
370(4)
13.5 Conclusion
374(1)
References
375(4)
Index 379
R. Rajasekar PhD, Professor and Head of the Department of Mechanical Engineering, Kongu Engineering College (an Autonomous Institution under Anna University), Tamilnadu, India. He obtained his PhD from the Indian Institute of Technology, Kharagpur, and specializes in materials science and engineering, renewable energy, surface coating on solar cells, and tribological performance of carbide inserts. He has published more than 100 research articles in reputed international journals, as well as more than 30 book chapters.

C. Moganapriya PhD, is an associate professor in the Department of Mechanical Engineering, Kongu Engineering College (An Autonomous Institution under Anna University), Tamilnadu, India. She completed her PhD in 2019, and her current research area includes surface engineering of solar cells for performance enhancement of power conversion efficiency and tribological performance of cutting tool insert by adopting several hard coating materials. She has published 13 research articles and 15 book chapters with international publishers.

A. Mohan Kumar PhD, is an associate professor in the Department of Mechanical Engineering, Kongu Engineering College (An Autonomous Institution under Anna University), Tamil Nadu. He completed his postgraduate degree at Government College of Engineering, Salem. His research areas are the characterization of reinforced composite materials, composite machining polymer coatings, and nanocomposite coatings. He has published 13 research articles and book chapters.