Atnaujinkite slapukų nuostatas

El. knyga: Multi-Criteria and Multi-Dimensional Analysis in Decisions: Decision Making with Preference Vector Methods (PVM) and Vector Measure Construction Methods (VMCM)

  • Formatas: PDF+DRM
  • Serija: Vector Optimization
  • Išleidimo metai: 31-Oct-2023
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783031405389
  • Formatas: PDF+DRM
  • Serija: Vector Optimization
  • Išleidimo metai: 31-Oct-2023
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783031405389

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

A new era is emerging in which a group of quantitative methods featuring characteristics of multidimensional comparative analysis (MCA) and multi-criteria decision-making analysis (MCDA) can be used to automate objective decision-making processes. This book introduces the character of the criteria (desirable, non-desirable, motivating, demotivating, and neutral) to MCDA and MCA methods. It presents the author’s own developed methods, the preference vector method (PVM), for solving multi-criteria problems in decision making; and, vector measure construction method (VMCM), which is dedicated to solving typical problems in the field of multidimensional comparative analysis. All methods are explained step by step with relevant examples, primarily in the fields of economics and management.


Chapter 1 Introduction.
Chapter 2 Problems of multi-criteria and multidimensionality in decision support.- Part I: Methods of multidimensional comparative analysis.
Chapter 3 Initial data analysis procedure.
Chapter 4 Methods for building aggregate measures.- Part II: Multi-criteria decision support methods.
Chapter 5 Methods based on the outranking relationship.
Chapter 6 Methods based on the utility function.
Chapter 7 Multi-criteria methods using function points.
Chapter 8 Conclusions.

Kesra Nermend is Professor and Head of the Department of Decision Support Methods and Cognitive Neuroscience; and President of the Centre for Knowledge and Technology Transfer at the Institute of Management, University of Szczecin (Szczecin, Poland). His scientific interests are related to the use of quantitative methods and IT tools in the analysis of socio-economic processes, with particular emphasis on multi-criteria methods, multidimensional data analysis, cognitive neuroscience techniques in researching social behavior and modeling consumer preference in the process of making business decisions. He has published over 130 publications in Polish and English languages including 20 monographs.