Atnaujinkite slapukų nuostatas

El. knyga: Physical Chemistry of Gas-Liquid Interfaces

Edited by (College of Wooster, Wooster, OH, USA), Edited by (Emeritus Professor of Chemistry, Illinois State University, Normal, IL; and Scholar in Residence, Chemistry, Illinois Wesleyan University, Bloomington, IL, USA)
Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Physical Chemistry of Gas-Liquid Interfaces, Volume One in the Developments in Physical and Theoretical Chemistry series, addresses the physical chemistry of gas transport and reactions across liquid surfaces. As-liquid interfaces are all around us, with examples including molten V2O5/K2SO4 catalysts in industry for SO3 synthesis, surfactants in the lungs for gas exchange, fuel droplets in jet engines for combustion, and sea spray aerosols in the atmosphere for cloud formation, this book provides the necessary information that scientists need to obtain an understanding of the physical chemistry of liquid surfaces.

As the reaction environment at liquid surfaces is completely unlike bulk gas or bulk liquid, chemists must learn to readjust their conceptual framework when moving into this field.

  • Provides an interdisciplinary view of the chemical dynamics of liquid surfaces, making the content of specific use to physical chemists and atmospheric scientists
  • Features 100 figures and illustrations to underscore key concepts and aid in retention for young scientists in industry and graduate students in the classroom
  • Helps scientists who are transitioning to this field by offering the appropriate thermodynamic background and then surveying the current state of research
List of Contributors
xiii
Foreword xvii
Chapter 1 Molecular Perspective of Gas-Liquid Interfaces: What Can Be Learned From Theoretical Simulations?
1(40)
Tsun-Mei Chang
1 Introduction
1(1)
2 Computational Methodologies
2(7)
2.1 Force Fields
3(5)
2.2 Simulation Techniques
8(1)
3 Interfacial Properties at Neat Liquid Interfaces
9(8)
3.1 Thermodynamic Properties
9(3)
3.2 Density Distributions
12(1)
3.3 Orientations and Local Structures
13(3)
3.4 Dynamical Properties
16(1)
4 Adsorption and Mass Transport Across Interfaces
17(6)
4.1 Solute Distribution and Equilibrium Solvation
17(4)
4.2 Chemical Reactions at Liquid Interfaces
21(1)
4.3 Free Energy of Mass Transport
22(1)
5 Conclusions and Outlook
23(18)
References
24(17)
Chapter 2 Molecular Simulations of Volatile Organic Interfaces
41(18)
Kevin Gochenour
Alexanndra J. Heyert
Gerrick E. Lindberg
1 Organic Liquid---Vapor Interfaces
41(1)
2 Achieving Molecular Resolution With Computational Methods
42(8)
2.1 The Computational Microscope
42(1)
2.2 Molecular Dynamics Simulations
43(1)
2.3 Standard Practice and Definitions
44(4)
2.4 Computational Methods Employed in This Work
48(2)
3 Results and Discussion
50(5)
3.1 Density and Energy Profiles
50(2)
3.2 Radial Distribution Functions
52(1)
3.3 Fluctuation of the Instantaneous Interface
53(1)
3.4 Benzene Ring Stacking Is Unaffected by Proximity to the Interface
53(1)
3.5 Diffusion
54(1)
4 Conclusions and Opportunities for Future Work
55(4)
Acknowledgments
55(1)
References
56(3)
Chapter 3 Fluctuations and Adsorption at Liquid-Vapor Interfaces
59(20)
Kaustubh Rane
1 Introduction
59(1)
2 Interfacial Fluctuations
60(4)
2.1 Density---Density Correlations
60(1)
2.2 Density---Density Correlations at Liquid---Vapor Interfaces
61(1)
2.3 Local Compressibility
61(2)
2.4 Surface Waves
63(1)
3 Thermodynamics of Adsorption
64(6)
3.1 Important Assumptions
64(1)
3.2 Free Energy Change
65(1)
3.3 The Fluctuation Part of Free Energy Change
66(3)
3.4 Solute-Induced Changes
69(1)
4 Quantifying the Role of Interfacial Fluctuations in Adsorption
70(4)
4.1 Rigorous Approach
70(1)
4.2 Indirect Approach
71(1)
4.3 Dependence on Intermolecular Interactions
72(1)
4.4 Importance of Understanding the Role of Interfacial Fluctuations in Adsorption
72(2)
5 Concluding Remarks
74(5)
Acknowledgments
75(1)
References
75(4)
Chapter 4 Ionization of Surfactants at the Air---Water Interface
79(26)
Chi M. Phan
1 Background
79(8)
1.1 Ionic Surfactants and Applications
79(3)
1.2 Ionic Structure of Counterions Near the Air---Water Interface
82(2)
1.3 Ionization of Surfactants
84(3)
2 Experimental Methods
87(3)
2.1 Equilibrium Constant of Ionization
87(1)
2.2 Surface Tension
88(1)
2.3 Neutron Reflectometry
88(1)
2.4 Surfactant-Induced Change in Surface Potential
89(1)
2.5 Other Methods
90(1)
2.6 Summary
90(1)
3 Theoretical Modeling
90(6)
3.1 Ionic Binding
91(2)
3.2 Reaction Equilibrium
93(1)
3.3 Thermodynamic Equilibrium
94(1)
3.4 Comparison Among the Three Methods
95(1)
4 Coupled Ionization/Adsorption Phenomena at the Molecular Level
96(4)
4.1 Arrangement of Water Molecules at the Surface
96(1)
4.2 Hydronium Ions
97(1)
4.3 Hydrophilicity of Ionic States
98(1)
4.4 Influence of the Surfactant Tail
98(2)
5 Conclusions
100(5)
Acknowledgments
100(1)
References
101(4)
Chapter 5 Vibrational Spectroscopy of Gas-Liquid Interfaces
105(30)
Stephen M. Baumler
Heather C. Allen
1 What Does Vibrational Spectroscopy Measure?
105(1)
2 Bulk Versus Interface
106(3)
3 Vibrational Spectroscopy of Liquid Surfaces
109(1)
4 Infrared and Raman Spectroscopy
110(2)
5 Nonlinear Vibrational Spectroscopy
112(2)
6 Sampling Modes of Air---Liquid Surfaces
114(1)
7 Applications for Vibrational Spectroscopy at Gas---Liquid Interfaces
115(1)
8 Infrared Reflection---Absorption Spectroscopy
116(3)
9 Glancing-Angle Raman Spectroscopy
119(2)
10 Vibrational Sum---Frequency Generation
121(6)
11 Summary and Future Outlook
127(8)
References
128(7)
Chapter 6 X-Ray Excited Electron Spectroscopy to Study Gas---Liquid Interfaces of Atmospheric Relevance
135(32)
Markus Ammann
Luca Artiglia
Thorsten Bartels-Rausch
1 Introduction
135(1)
2 Introduction to Photoelectron Spectroscopy and Electron Detected X-Ray Absorption Spectroscopy
136(9)
3 Technical Implementation and Sample Environments
145(2)
4 Structure and Composition at the Gas---Aqueous Solution Interface
147(7)
5 The Nature and Local Environment of Solutes in Frozen Systems
154(4)
6 Emerging Developments
158(9)
References
159(8)
Chapter 7 Liquid Surface X-Ray Scattering
167(28)
Mrinal K. Bera
Wei Bu
Ahmet Uysal
1 Overview
167(1)
2 Theory and Instrumentation
167(7)
2.1 Theory for Liquid Surface Scattering Techniques
167(5)
2.2 Liquid Surface Reflectometer
172(2)
3 Example Applications at the Air---Aqueous Interface
174(10)
3.1 Air---Pure-Water Interface
175(1)
3.2 Ion Distributions Without Monolayers
175(3)
3.3 Ion Distributions in the Presence of Surfactants
178(2)
3.4 Biological Systems
180(2)
3.5 Nanoparticles at Air---Water Interfaces
182(2)
4 Example Applications Beyond the Air---Aqueous Interface
184(5)
4.1 Normal Alkanes and Dielectric Liquids
185(2)
4.2 Room Temperature Ionic Liquids
187(1)
4.3 Liquid Metals
188(1)
4.4 Air---Liquid Crystal Interfaces
188(1)
5 Future Prospects
189(6)
Acknowledgments
189(1)
References
189(6)
Chapter 8 Particle Beam Scattering From the Vacuum-Liquid Interface
195(50)
William A. Alexander
1 Introduction
195(8)
1.1 Benefits of A Vacuum Environment
197(2)
1.2 Experimental Approaches Used to Overcome the Liquid Vapor Pressure Problem in Vacuum
199(4)
2 The Scattering Approaches
203(12)
2.1 Introduction to Atomic and Molecular Beams
203(4)
2.2 The Approach of Beam Scattering with Time-of-Flight Techniques
207(5)
2.3 The Approach of Beam Scattering with Laser Spectroscopic Techniques
212(3)
2.4 The Approach of Beam Scattering with Velocity Map Imaging: A New Frontier?
215(1)
3 The Theoretical Approaches
215(18)
3.1 Kinematic Models
215(10)
3.2 Molecular Dynamics Trajectories Provide Insight into Experimental Results
225(8)
4 Outlook and Needs
233(12)
References
234(11)
Chapter 9 Microfluidics and Interfacial Chemistry in the Atmosphere
245(26)
Fei Zhang
Yao Fu
Xiao-Ying Yu
1 Introduction
245(1)
2 Microfluidics and Fabrication
246(3)
2.1 Microfluidic Fabrication
246(1)
2.2 Soft Lithography
247(2)
3 Optical Spectroscopy in Air---Liquid Studies
249(1)
3.1 Infrared Spectroscopy
249(1)
3.2 Raman Spectroscopy
249(1)
3.3 Sum-Frequency Generation Spectroscopy
250(1)
4 System for Analysis at Liquid and Vacuum Interface and Its Application at the Air---Liquid Interface
250(12)
4.1 System for Analysis at Liquid and Vacuum Interface
251(1)
4.2 Design Considerations
251(1)
4.3 Demonstration of Feasibility
252(1)
4.4 SALVI Enabled Liquid SIMS
252(2)
4.5 Analytical Capability
254(1)
4.6 Liquid Secondary Ion Mass Spectrometry Optimization
255(1)
4.7 System for Analysis at Liquid and Vacuum Interface Applications
256(6)
5 Conclusion
262(9)
Acknowledgments
263(1)
References
263(8)
Chapter 10 Gas-Liquid Interfaces in the Atmosphere: Impacts, Complexity, and Challenges
271(44)
Douglas B. Collins
Vicki H. Grassian
1 Introduction
271(2)
2 Chemistry at the Ocean---Atmosphere Interface
273(8)
2.1 Origin and Properties of the Sea Surface Microlayer
274(1)
2.2 Ocean Surface Chemistry and Trace Gas Fluxes
275(2)
2.3 Sea Spray Aerosol Production
277(2)
2.4 Photochemistry at the Air---Sea Interface
279(2)
3 Atmospheric Chemistry of the Aqueous Phase
281(10)
3.1 Trace Gas Interactions With Aqueous Aerosols and Droplets
284(3)
3.2 Transfer of Oxidants to the Aqueous Phase
287(2)
3.3 Photochemical Processes in the Atmospheric Aqueous Phase
289(1)
3.4 Production of Reactive Oxygen Species
290(1)
4 Partitioning of Surface-Active Compounds in Aerosols
291(3)
4.1 Selectivity of Surface-Active Compounds at Interfaces
291(1)
4.2 Gas---Particle Partitioning and Particle Growth
292(1)
4.3 Surface Tension Effects on Cloud Droplet Nucleation
293(1)
5 Technical Challenges in the Study of Environmentally Relevant Systems
294(3)
5.1 Surface-Selective Techniques
294(3)
5.2 Development of Experimental Tools for Complex Environmental Systems
297(1)
6 Summary
297(18)
Acknowledgments
298(1)
References
298(17)
Chapter 11 New Particle Formation and Growth: Creating a New Atmospheric Phase Interface
315(38)
Tinja Olenius
Taina Yli-Juuti
Jonas Elm
Jenni Kontkanen
Ilona Riipinen
1 Overview
315(4)
1.1 Observations of Particle Formation and Growth
315(2)
1.2 Atmospheric Vapors and Particle Formation
317(1)
1.3 Initial Clustering and Further Particle Growth
317(2)
2 Initial Molecular Cluster Formation
319(16)
2.1 Compounds Involved in Atmospheric Clustering
319(1)
2.2 Field Observations and Laboratory Experiments of Sub-3 nm Clusters
320(5)
2.3 Theoretical Understanding of Clustering Processes
325(10)
3 Growth of Nanoparticles Beyond a Few Nanometers
335(10)
3.1 From Molecular Clustering to Growth of Particle Population
335(2)
3.2 Observations of Growth Events
337(1)
3.3 Compounds Participating in Nanoparticle Growth
338(2)
3.4 Mechanisms of Vapor Uptake at Different Environmental Conditions and Particle Sizes
340(5)
4 Outlook
345(8)
References
346(7)
Chapter 12 Characterization of Individual Aerosol Particles
353(50)
Ryan C. Sullivan
Kyle Gorkowski
Leif Jahn
1 Overview---The Need for Individual Particle Analysis
353(1)
2 Online Single-Particle Mass Spectrometry
353(15)
2.1 Aerodynamic Lens Sampling Inlets
355(1)
2.2 UV Laser Desorption/Ionization
356(4)
2.3 Two-Step Laser Desorption/Ionization
360(2)
2.4 Thermal Desorption + Electron Ionization
362(3)
2.5 IR Laser Vaporization + Electron Ionization
365(2)
2.6 Other Mass Spectrometry Techniques
367(1)
3 Techniques for Analysis of Individual Suspended Particles
368(7)
3.1 Spectrometry of Suspended Particles
369(3)
3.2 Aerosol Optical Tweezers
372(2)
3.3 Electrodynamic Balance
374(1)
3.4 Acoustic Levitation
374(1)
4 Analysis of Individual Particles on Substrates
375(8)
4.1 Particle Collection Onto Substrates
375(1)
4.2 Electron Spectromicroscopy
376(3)
4.3 X-Ray Spectromicroscopy
379(3)
4.4 Micro-Raman Spectroscopy
382(1)
5 Future Prospectus
383(20)
References
385(18)
Chapter 13 Heterogeneous Reactions in Aerosol
403(32)
James F. Davies
Kevin R. Wilson
1 Introduction
403(6)
1.1 Homogeneous Versus Heterogeneous Reactions in the Atmosphere
404(1)
1.2 The Physical State of Aerosol
405(1)
1.3 Global Particle Compositions and Complexity
406(3)
2 Rates of Heterogeneous Reactions
409(10)
2.1 The Kinetics of Heterogeneous Reactions
409(4)
2.2 Laboratory Methods for Measuring Kinetics of Heterogeneous Reactions
413(2)
2.3 Radical Uptake and Reaction Rates
415(4)
3 Mechanisms of Heterogeneous Reactions
419(4)
3.1 Detailed Reaction Pathways
419(3)
3.2 Simplifying the Complexity of Chemical Evolution
422(1)
4 Connecting Heterogeneous Reactions and Aerosol Properties
423(4)
4.1 Cloud Condensation Nuclei Activity and Hygroscopicity
424(1)
4.2 Optical Properties
425(2)
5 Conclusions
427(8)
References
428(7)
Chapter 14 Interfacial Photochemistry
435(24)
Christian George
Martin Bruggemann
Nathalie Hayeck
Liselotte Tinel
James Donaldson
1 Overview
435(1)
2 Photochemistry in and Between Different Phases
435(8)
2.1 Introduction
435(1)
2.2 Principles and Mechanisms of Photochemistry
436(4)
2.3 The Gas---Liquid Interface Is a Special Environment for Photochemistry
440(3)
3 Examples and Implications From Interfacial Photochemistry
443(9)
3.1 Photoenhanced Reactions at the Gas---Liquid Interface
444(1)
3.2 Interfacial Photosensitized Chemistry as a Source of Radicals
444(4)
3.3 Photochemistry of Carboxylic Acids at Aqueous Interfaces
448(4)
4 Conclusions
452(7)
References
453(6)
Index 459
Dr. Jennifer A. Faust is an Assistant Professor in the Department of Chemistry, College of Wooster, Wooster, OH, USA. She obtained her PhD in physical chemistry from the University of Wisconsin-Madison in 2015 and subsequently completed a postdoctoral fellowship in atmospheric chemistry at the University of Toronto. The Faust undergraduate research group currently focuses on characterizing multiphase reactions of organic components of rainwater. J.E. House is Scholar in Residence, Illinois Wesleyan University, and Emeritus Professor of Chemistry, Illinois State University. He received BS and MA degrees from Southern Illinois University and the PhD from the University of Illinois, Urbana. In his 32 years at Illinois State, he taught a variety of courses in inorganic and physical chemistry. He has authored almost 150 publications in chemistry journals, many dealing with reactions in solid materials, as well as books on chemical kinetics, quantum mechanics, and inorganic chemistry. He was elected Professor of the Year in 2011 by the student body at Illinois Wesleyan University. He has also been elected to the Southern Illinois University Chemistry Alumni Hall of Fame. He is the Series Editor for Elsevier's Developments in Physical & Theoretical Chemistry series, and a member of the editorial board of The Chemical Educator.