Atnaujinkite slapukų nuostatas

Plastics: Microstructure and Engineering Applications 4th edition [Minkštas viršelis]

(Previously University of Birmingham, UK), (School of Metallurgy and Materials, University of Birmingham, UK), (School of Metallurgy and Materials, University of Birmingham, UK)
  • Formatas: Paperback / softback, 336 pages, aukštis x plotis: 276x216 mm, weight: 580 g
  • Išleidimo metai: 19-Feb-2020
  • Leidėjas: Butterworth-Heinemann Ltd
  • ISBN-10: 0081024991
  • ISBN-13: 9780081024997
Kitos knygos pagal šią temą:
  • Formatas: Paperback / softback, 336 pages, aukštis x plotis: 276x216 mm, weight: 580 g
  • Išleidimo metai: 19-Feb-2020
  • Leidėjas: Butterworth-Heinemann Ltd
  • ISBN-10: 0081024991
  • ISBN-13: 9780081024997
Kitos knygos pagal šią temą:

Plastics: Microstructure and Engineering Applications, Fourth Edition, covers the mechanical, chemical and electrical properties of plastic materials, along with discussions of the wider plastics issues that today’s engineers and materials scientists face, including manufacturing processes and the design of plastic products. In addition to a thorough revision, the book provides detailed discussions on characterization techniques, crystallization and molecular structure. Thermoplastic composites, 3D printing and electrical properties of plastics are also covered in great detail, as are new techniques, including thermogravimetric analysis, sustainability, lifecycle analysis, and waste disposal considerations.

  • Provides introductory information for students of plastics technology, materials science, mechanical engineering, and other fields
  • Presents a useful introduction to the fundamentals of plastics for academic and industrial researchers from other fields
  • Includes substantial new coverage on the electrical properties of plastics and an entirely new chapter on sustainability and lifecycle analysis of plastic materials
Preface xi
1 Introduction
1.1 Plastics and polymers
1(1)
1.2 The development of the macromolecular concept
1(1)
1.3 Classes of polymer
2(1)
1.4 The plastics age
3(1)
1.5 Properties of common thermoplastics
4(3)
1.5.1 Product appearance
4(1)
1.5.2 Density
4(1)
1.5.3 Thermal properties
4(2)
1.5.4 Mechanical properties
6(1)
1.6 Polymer processing and product features
7(3)
1.6.1 Blow mouldings
7(1)
1.6.2 Extruded products
7(1)
1.6.3 Injection mouldings
7(2)
1.6.4 Thermoformed products
9(1)
1.6.5 Blown film
9(1)
1.6.6 Injection blow moulded bottles
9(1)
1.7 Conclusions
10(3)
2 Molecular structures and polymer manufacture
2.1 Introduction
13(1)
2.2 Polymerization
13(3)
2.2.1 Addition polymerization
14(1)
2.2.2 Step-growth polymerization
15(1)
2.3 Molecular weight distribution
16(3)
2.3.1 Number-average and weight-average molecular weight
16(2)
2.3.2 Size-exclusion chromatography
18(1)
2.3.3 Viscometry and the viscosity-average molecular weight
18(1)
2.3.4 The importance of Mn and Mw
19(1)
2.4 Chain regularity
19(2)
2.4.1 Stereoregular addition polymers
19(1)
2.4.2 Copolymerization
20(1)
2.4.3 Block copolymers
21(1)
2.5 Branched and cross-linked polymers (thermosets and rubbers)
21(3)
2.5.1 Chain branching
21(1)
2.5.2 Thermosets
22(1)
2.5.3 Rubbers
23(1)
2.6 Bonding and intermolecular forces in polymers
24(1)
2.7 Industrial polymer production and economics of manufacture
25(3)
2.7.1 Monomer manufacture
25(1)
2.7.2 Polymerization processes
25(1)
2.7.3 The economics of scale
26(2)
2.7.4 Additives
28(1)
2.8 Grades and applications of commodity plastic
28(5)
2.8.1 Polyethylenes (polyethenes)
28(1)
2.8.2 Polypropylene
29(1)
2.8.3 Polyvinyl chloride
30(1)
2.8.4 Polystyrene and toughened derivatives
31(2)
3 Amorphous polymers and the glass transition
3.1 Introduction
33(1)
3.2 Modelling the shape of a polymer molecule
33(8)
3.2.1 Conformations of the C---C bond
33(1)
3.2.2 Walks on a diamond lattice
34(1)
3.2.3 Effect of molecular weight on molecular size
34(3)
3.2.4 Entanglements in polymer melts
37(1)
3.2.5 Network chain elasticity
38(2)
3.2.6 Rubbers
40(1)
3.3 The glass transition temperature
41(8)
3.3.1 Rotational and translational motions in the liquid state
41(1)
3.3.2 Sub-Tg motion
42(1)
3.3.3 Control of the Tg
43(2)
3.3.4 Free volume
45(1)
3.3.5 Measurement of Tg using thermomechanical analysis
45(1)
3.3.6 Glass microstructure
46(1)
3.3.7 Elastic moduli of glasses
47(2)
4 Semi-crystalline polymers
4.1 Introduction
49(1)
4.2 Structure and shape
49(5)
4.2.1 Crystal lattice and unit cell
49(2)
4.2.2 Crystal elastic moduli
51(1)
4.2.3 Crystal shape
51(1)
4.2.4 The three-phase model
52(1)
4.2.5 Spherulites
52(2)
4.3 Percentage (or degree of) crystallinity
54(3)
4.3.1 Density
54(1)
4.3.2 Differential scanning calorimetry (DSC)
55(1)
4.3.3 X-ray diffraction
55(2)
4.4 Crystalline phase orientation
57(2)
4.4.1 Uniaxially stretched fibre, tape or film
58(1)
4.4.2 Biaxially stretched products
59(1)
4.5 Crystallization kinetics
59(5)
4.5.1 Isothermal crystallization kinetics
61(1)
4.5.2 Temperature dependence of the crystallization rate
62(2)
4.6 Modulus of spherulitic polyethylene
64(3)
4.6.1 Deformation mechanisms in spherulites
64(2)
4.6.2 Elastic moduli of spherulitic polyethylene
66(1)
5 Processing
5.1 Introduction
67(1)
5.2 Heat transfer mechanisms
68(3)
5.2.1 Conduction
68(2)
5.2.2 Convection
70(1)
5.2.3 Biot modulus
70(1)
5.2.4 Radiation
70(1)
5.2.5 Viscous heating
71(1)
5.3 Melt flow of thermoplastics
71(3)
5.3.1 Shear flows
71(1)
5.3.2 Extensional flows
72(1)
5.3.3 Effects of molecular weight on melt flow
73(1)
5.3.4 Effects of temperature on melt flow
74(1)
5.3.5 Effects of shear rate on melt flow
74(1)
5.4 Extruder output
74(5)
5.4.1 Melting and plasticization
74(1)
5.4.2 Extruder output
75(2)
5.4.3 Extrusion solidification
77(1)
5.4.4 Ram extrusion of ultrahigh molecular weight polythene powder
77(2)
5.5 Processes involving melt inflation
79(6)
5.5.1 Blown film
79(1)
5.5.2 Extrusion blow moulding
80(2)
5.5.3 Injection blow moulding
82(1)
5.5.4 Thermoforming
83(2)
5.6 Injection moulding
85(4)
5.6.1 Mould design
85(1)
5.6.2 Cycle of operations
85(2)
5.6.3 Control of mould filling
87(1)
5.6.4 Analysis of mould filling
87(2)
5.7 Thermoset processing --- reaction injection moulding
89(2)
5.8 Additive manufacturing
91(4)
5.8.1 Rapid prototyping
91(1)
5.8.2 Additive manufacturing for polymer components
92(1)
5.8.3 Laser sintering of polymers
92(1)
5.8.4 Other developments in additive manufacture for polymers
93(2)
6 Effects of melt processing
6.1 Introduction
95(1)
6.2 Microstructural changes
95(6)
6.2.1 Effects of cooling rate on crystallinity and density
95(2)
6.2.2 Melt stress effects for glassy polymers
97(2)
6.2.3 Melt stress effects for semi-crystalline polymers
99(1)
6.2.4 Weld lines
100(1)
6.3 Macroscopic effects
101(5)
6.3.1 Shrinkage and distortion
101(2)
6.3.2 Surface roughness
103(1)
6.3.3 Residual stresses in extruclates
103(2)
6.3.4 Residual stresses in injection mouldings
105(1)
6.4 Fusion of particle and bead polymers
106(5)
6.4.1 Mixing
106(1)
6.4.2 Polyvinyl chloride powder processing
107(1)
6.4.3 Ultrahigh molecular weight polyethylene powder processing
108(1)
6.4.4 Polystyrene foam bead processing
109(2)
7 Viscoelastic behaviour
7.1 Introduction
111(1)
7.2 Linear viscoelastic models
111(5)
7.2.1 The Voigt model for creep
111(2)
7.2.2 Creep compliance and the generalized Voigt model
113(1)
7.2.3 Boltzmann superposition principle and stress relaxation modulus
114(1)
7.2.4 Temperature dependence of viscoelastic behaviour
115(1)
7.3 Creep design
116(2)
7.3.1 Creep data
116(1)
7.3.2 Linear viscoelastic design
116(2)
7.3.3 Non-linear viscoelastic design
118(1)
7.3.4 Recovery and intermittent creep
118(1)
7.4 Cyclic deformation and dynamic mechanical analysis
118(9)
7.4.1 Linear viscoelastic analysis
118(4)
7.4.2 Isolation of machine vibration
122(1)
7.4.3 Constrained layer damping of metal panels
123(1)
7.4.4 High damping polymers
124(3)
8 Yielding
8.1 Molecular mechanisms of yielding
127(3)
8.1.1 Glassy polymers
127(1)
8.1.2 Semi-crystalline polymers
128(2)
8.2 Yield under different stress states
130(6)
8.2.1 Tensile instability and necking
130(2)
8.2.2 Yield in bending
132(1)
8.2.3 Buckling and yielding in compression
133(1)
8.2.4 Localized yield in compression --- hardness
134(1)
8.2.5 Localized yield -- scratching of surfaces
135(1)
8.2.6 Localized yield -- film or sheet penetration
135(1)
8.3 Yield on different time scales
136(1)
8.3.1 Strain rate dependence
136(1)
8.3.2 Creep rupture
136(1)
8.4 Orientation hardening
136(2)
8.5 Micro-yielding
138(5)
8.5.1 Crazing
138(2)
8.5.2 Energetics of craze growth
140(1)
8.5.3 Plastic collapse of closed-cell foams
141(1)
Reference
142(1)
9 Fracture
9.1 introduction
143(1)
9.2 Fracture surfaces and their interpretation
144(1)
9.3 Crack initiation
144(4)
9.3.1 Elastic stress concentrations
144(2)
9.3.2 Yield stress concentrations
146(1)
9.3.3 Cracks in brittle surface layers
147(1)
9.3.4 Residual stresses
147(1)
9.3.5 Summary
148(1)
9.4 Crack growth
148(5)
9.4.1 Fracture mechanics: the stress intensity factor of a crack tip stress field
148(1)
9.4.2 Stress intensity factors for certain specimen geometries
148(1)
9.4.3 Fracture toughness/C/c
149(1)
9.4.4 Crack tip yielding
149(2)
9.4.5 Plane strain fracture in thick sheet
151(1)
9.4.6 Plane stress fracture in thin sheet
151(1)
9.4.7 Strain rate and crack velocity effects
152(1)
9.5 Impact tests
153(6)
9.5.1 Izod and Charpy impact tests on bars
153(1)
9.5.2 Impact tests on sheet
154(1)
9.5.3 Impact tests on products
155(1)
9.5.4 Instrumented impact tests
156(1)
Reference
157(2)
10 The ageing of polymers
10.1 Introduction: ageing, degradation and environmental effects
159(1)
10.2 Degradation during processing
160(2)
10.2.1 Polyolefins
160(1)
10.2.2 Polyvinyl chloride
161(1)
10.2.3 Water and step-growth polymers
162(1)
10.3 Degradation at elevated temperatures
162(4)
10.3.1 Oxidation of polyolefins
162(2)
10.3.2 Hydrolysis
164(1)
10.3.3 Maximum use temperature
165(1)
10.3.4 Studying thermal degradation
166(1)
10.4 Fire
166(3)
10.4.1 Stages in a fire
166(2)
10.4.2 Fire tests
168(1)
10.4.3 Fire and flame retardants
168(1)
10.4.4 Fires involving cable and foam
169(1)
10.5 Weathering
169(4)
10.5.1 Ultraviolet wavelengths and absorption coefficients
169(1)
10.5.2 Effects of weathering
170(1)
10.5.3 Protection against photo-oxidation
171(1)
10.5.4 Accelerated exposure tests
172(1)
10.6 Environmental stress cracking
173(1)
10.6.1 Environmental stress cracking phenomena
173(1)
10.6.2 Craze swelling in liquids
174(1)
10.6.3 Crack and craze initiation
175(1)
10.6.4 Crack growth in a liquid environment
176(1)
10.6.5 The complete failure process
176(2)
10.7 Physical ageing (enthalpy or volume relaxation)
178(2)
10.8 Secondary crystallization
180(3)
11 Transport properties
11.1 Gases
183(1)
11.1.1 Solubility
183(1)
11.1.2 Steady-state gas diffusion
184(2)
11.1.3 Transient effects in gaseous diffusion
186(1)
11.1.4 Packaging applications
187(2)
11.1.5 Metal and ceramic coatings
189(1)
11.1.6 Gas Ration
190(1)
11.2 Liquids
11.2.1 High-density polyethylene fuel tanks
191(1)
11.2.2 Extraction of additives by food liquids
192(1)
11.2.3 Reverse osmosis and dialysis membranes
192(1)
11.3 Solids
192(2)
11.4 Light
194(5)
11.4.1 Refraction and reflection of light
195(2)
11.4.2 Light scattering
197(1)
11.4.3 Fibre optics
198(1)
11.5 Thermal barriers
199(4)
12 Electrical properties
12.1 Conducting Polymers
203(1)
12.2 Volume and surface resistivity
204(1)
12.3 Insulation and applications of semiconducting polymers
205(8)
12.3.1 Low-voltage electrical insulation
205(1)
12.3.2 High-voltage insulation
205(2)
12.3.3 Static electrification
207(4)
12.3.4 Electromagnetic screening of plastic mouldings
211(1)
12.3.5 Semiconducting polymers for batteries and fuel cells
211(2)
12.4 Dielectric behaviour
213(5)
12.4.1 Dielectric constant and losses
214(1)
12.4.2 Polarization loss processes
215(1)
12.4.3 High-frequency insulation and capacitors
216(2)
12.5 Flexible switches and electrets
218(3)
12.5.1 Film switches
218(1)
12.5.2 Electrets
218(1)
12.5.3 Piezoelectric film
219(2)
13 Multi-component polymers --- improving the properties of polymers
13.1 Introduction
221(1)
13.2 Rubber toughening
221(4)
13.2.1 Toughening systems and their microstructure
221(1)
13.2.2 Elastic moduli and stress concentrations
222(1)
13.2.3 Initiation of crazes or yielding
223(1)
13.2.4 Yield
224(1)
13.3 Polymer blends
225(4)
13.3.1 Miscibility and compatibility
226(1)
13.3.2 Blend preparation
226(1)
13.3.3 Detection of miscibility
227(1)
13.3.4 The driving force for miscibility
227(2)
13.4 Phase-separated structures
229(4)
13.4.1 Block copolymers
229(1)
13.4.2 RIM polyurethane
230(2)
13.4.3 Thermoplastic vulcanisates
232(1)
13.5 Foams
233(4)
13.5.1 Polyurethane open-cell foam chemistry
233(1)
13.5.2 Open-cell foam geometry
234(2)
13.5.3 Open-cell foam compressive response
236(1)
13.5.4 Closed-cell foam geometry
236(1)
13.5.5 Closed-cell foam compressive response
236(1)
13.6 Snort fibre reinforcement
237(4)
13.6.1 Fibres and their orientation
237(1)
13.6.2 Young's modulus
238(1)
3.6.3 Tensile strength
239(2)
14 Design: materials, shape selection and design for the environment
14.1 Introduction
241(1)
14.2 Polymer selection
241(3)
14.2.1 Polymer selection packages
241(2)
14.2.2 Property combinations for materials selection
243(1)
14.2.3 The nearly flat skin of a car door
243(1)
14.2.4 The tubular frame of a car body
244(1)
14.3 Shape selection to optimize stiffness
244(7)
14.3.1 Corrugations
244(1)
14.3.2 Ribs on injection mouldings
244(2)
14.3.3 Buckling of ribs
246(1)
14.3.4 Torsion of beams of constant cross section
247(2)
14.3.5 Torsion of beams of non-constant cross section
249(2)
14.4 Product shapes for injection moulding
251(3)
14.4.1 Uniform part thickness
251(1)
14.4.2 Part thickness that decreases away from the gate
252(1)
14.4.3 Product casings that locate components
252(1)
14.4.4 Integral springs and snap joints
252(1)
14.4.5 Integral hinges
253(1)
14.5 Instrument panel case study
254(2)
14.5.1 Instrument panel shape
254(1)
14.5.2 Free headform impact tests
255(1)
14.5.3 Grade development
256(1)
14.6 Materials selection, design for the environment and sustainability
256(3)
15 Engineering case studies
15.1 Introduction
259(1)
15.2 Pipes for natural gas distribution
260(10)
15.2.1 Introduction
260(1)
15.2.2 The creep rupture test
260(1)
15.2.3 Choosing plastics
260(4)
15.2.4 Determining the pipe wall thickness
264(3)
15.2.5 Summary of the design requirements
267(1)
15.2.6 Pipe installation and jointing
267(3)
15.3 Bicycle helmets
270(4)
15.3.1 Introduction
270(1)
15.3.2 Biomechanics criteria for head injuries
270(1)
15.3.3 Geometry of the helmet/impacted object interface
271(1)
15.3.4 Design of a helmet liner for a particular impact velocity
272(1)
15.3.5 Choice of foam
273(1)
15.3.6 Summary
274(1)
15.4 Dynamic climbing ropes
274(6)
15.4.1 Introduction
274(1)
15.4.2 Rope flexibility in bending
275(1)
15.4.3 Dynamic loads in falls
275(2)
15.4.4 Rope design and manufacture
277(1)
15.4.5 Polymer selection
277(2)
15.4.6 Optimizing the rope tensile strength and Young's modulus
279(1)
15.4.7 Environmental effects on rope durability
279(1)
15.4.8 Rope testing standards
280(1)
15.5 Blood bag case study
280(6)
15.5.1 Introduction
280(1)
15.5.2 Polymer selection for blood bags
281(1)
15.5.3 Plasticizers in PVC
281(1)
15.5.4 Translucency, so contents can be seen
282(1)
15.5.5 Flexibility, to allow blood processing
282(1)
15.5.6 Heat resistance, to allow sterilization
282(1)
15.5.7 Tensile strength, to survive centrifugation and handling
283(1)
15.5.8 Permeability
283(1)
15.5.9 Processing and welding
284(1)
15.5.10 Biocompatibility
285(1)
15.5.11 Summary
285(1)
15.6 Ultrahigh molecular weight polyethylene for hip joint implants
286(7)
15.6.1 Introduction
286(1)
15.6.2 Grades of ultrahigh molecular weight polyethylene
286(1)
15.6.3 Acetabular cup design
286(1)
15.6.4 Sterilizing the polyethylene before implantation
287(1)
15.6.5 Ultrahigh molecular weight polyethylene microstructure and mechanical properties
288(1)
15.6.6 Biomechanics of the patient's activities
289(1)
15.6.7 Lubrication of the joint in the body
289(1)
15.6.8 Polyethylene wear mechanisms
289(1)
15.6.9 Body reactions to ultrahigh molecular weight polyethylene wear debris
290(1)
15.6.10 Improving the polyethylene wear resistance
290(2)
15.6.11 Summary
292(1)
Appendix A Diffusion of heat or impurities 293(6)
Appendix B Polymer melt flow analysis 299(12)
Appendix C Mechanics concepts D Further reading 311(4)
Index 315
Nigel Mills was a Reader in Polymer Engineering in the School of Metallurgy and Materials at the University of Birmingham, UK. He was the author of the first three editions of Plastics: Microstructure and Engineering Applications, as well as the Polymer Foams Handbook, published in 2007. Mike Jenkins is a Senior Lecturer in the School of Metallurgy and Materials at the University of Birmingham, UK. Dr. Jenkins has researched and published widely in the field of polymer science and has edited three books on the use of polymers in sport and biomaterials. Stephen Kukureka is a Senior Lecturer in the School of Metallurgy and Materials at the University of Birmingham, UK. Dr. Kukureka has collaborated and published widely in the mechanical properties and applied physics of polymers.