Atnaujinkite slapukų nuostatas

Principles of Nanoscience and Molecular Engineering [Kietas viršelis]

(University of Washington, Seattle, WA)
  • Formatas: Hardback, 606 pages, aukštis x plotis: 244x170 mm
  • Išleidimo metai: 15-Oct-2025
  • Leidėjas: Wiley-VCH Verlag GmbH
  • ISBN-10: 3527354476
  • ISBN-13: 9783527354474
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 606 pages, aukštis x plotis: 244x170 mm
  • Išleidimo metai: 15-Oct-2025
  • Leidėjas: Wiley-VCH Verlag GmbH
  • ISBN-10: 3527354476
  • ISBN-13: 9783527354474
Kitos knygos pagal šią temą:
Introductory resource on nanoscience and molecular engineering stressing the interdisciplinary nature of the field

Principles of Nanoscience and Molecular Engineering introduces nanoscale principles in molecular engineering, providing hands-on experience and stressing the interdisciplinary nature of this field. The book integrates phenomenological knowledge of material and transport properties with atomistic and molecular theories, bridging the gap between unbound classical three-dimensional space and the constrained nanorealm.

The book challenges conventional wisdom derived from anecdotal experiences and fosters an understanding of nanoscale molecular collective phenomena that do not violate classical physical laws but rather expand upon them. The surprise exotic awe is replaced by improved insight into the workings of atoms and molecules under interfacial, dimensional, and size constraints.

Readers will find detailed insights on molecular phase behavior under confinement, the atom model and wave equation, quantum mechanics, the electronic structure of molecules and matter, molecular modes and energetic properties, self-assembly, and statical mechanics of pair interactions in gases.

Written by a highly qualified professor in chemical engineering with significant research contributions to the field, Principles of Nanoscience and Molecular Engineering includes information on:





Shared perceptions of our world and their shortcomings, applied to the nanoscale, specifically to transport properties Structured condensed systems affected by interfaces and size constraints, examining the effect of non-interacting solid interfaces on liquid phases and free surfaces of solid crystal lattice arrangements The liquid condensed state, highlighting boundary conditions in thermally equilibrated systems Electronic transport in relation to the electronic structure of molecules, focusing on the movement of electrons through lower-dimensional systems

Principles of Nanoscience and Molecular Engineering serves as an excellent introductory resource on the subject for readers studying or working in related fields.
Preface                                i



Units, Fundamental Constants, and Symbols                                 
iii



CHAPTER 1: THE REALM OF NANOSCIENCE AND MOLECULAR ENGINEERING            1

1.1        NANOSCIENCE AND MOLECULAR ENGINEERING       1

1.1.1     Trial-and-Error Approach and Deductive Rational Engineering
               3

1.1.2     Combined Deductive Rational Engineering       5

1.1.3     Perception of our World Apparent Unique Behaviors in Small
Systems           6

1.2         PROPERTIES IN LOWER DIMENSIONALITIES    7

1.2.1     Flatland The Uniqueness of Lower Dimensionality    8

1.3         MECHANICAL SYSTEM RESPONSES     9

1.3.1     Bulk Rheological Responses    9

1.3.2     Molecular Perspective of Mechanical Systems               11

1.4         DRIVING FORCES AND RESPONSES IN THERMAL TRANSPORT            
15

1.4.1     Classical Thermal Transport     15

1.4.2     Thermal Conductivity Based on Classical Mechanics and Statistics  
16

1.4.3     Size Effect on Thermal Energy Transfer 23

1.5         ELECTRONIC TRANSPORT OF LOWER DIMENSIONAL SYSTEMS            25

1.5.1     Drude Model Microscopic Model for Macroscopic Electron
Transport             27

1.5.2     Characteristic Length Scales for Electron Transport     28

1.5.3     One-dimensional Electron Transport   31

1.6         ACOUSTIC TRANSPORT AND DIMENSIONALITY            35

1.7         CRITICAL MOLECULAR RESPONSE TIMES IN NANOCONSTRAINED SYSTEMS 37

1.7.1     Longitudinal Response to Stress: Maxwell Model          39

1.7.2     Shear Response to Stress          41

1.7.3     Dissipative Two-Dimensional Shear Response               44

1.8         MINIATURIZATION, SCALING, AND SYSTEM CONSTRAINTS     46

1.8.1     Phenomenological Shortcoming of the Scaling Analysis           
47

1.8.1.1 Terminal Velocity of Liquid Droplets and Solid Particles            
47

1.8.1.2 Interfacial Constraints and Nanocomposite Membrane Permeability 50

1.8.2     Dimensional Constraints and Thermal Conductivity    56

1.9         ORGANIZATION AND OUTLOOK FOR NANOSCIENCE AND
NANOTECHNOLOGY         60

1.9.1     Classification of Nanoscience and Nanotechnology   60

STUDY PROBLEMS TO CHAPTER 1         63

 

CHAPTER 2: INTERFACIAL AND SIZE-CONSTRAINT SYSTEMS  72

2.1         OVERVIEW        72

2.2         VAN DER WAALS MOLECULAR INTERACTIONS              73

2.2.1     Van der Waals Interactions in Gases    73

2.2.1     Van der Waals Interactions in Liquids  78

2.3         INTERFACIAL EFFECTS ON LIQUIDS AND VAN DER WAALS SOLIDS     82

2.3.1     Simplistic Perspective Bulk and Surface Binding Energy            
84

2.3.2     Interfacial Effect on Van der Waals Liquid Structures   85

2.3.2.1 Molecular Perspective of the Bulk Cohesion Energy     89

2.3.2.2 Molecular Perspective of the Adhesion Energy 91

2.3.3     Free Surface Effects on Van der Waals Solids  96

2.4         INTERFACIAL EFFECTS ON SPIN-COATED POLYMER FILMS      102

2.4.1     Bulk Mechanical Response, Polymer Mobility, and the Glass
Transition             102

2.4.2     Polymer Chain Entanglement and Melt Viscosity           104

2.4.3     Interfacial Constraint on the Glass Transition in Thin Films      
108

2.5         SIZE AND INTERFACIAL CONSTRAINTS IN METAL NANOCLUSTERS     114

2.5.1     Size Effect on Cohesion Energy and Surface Energy in
Quasicrystals  117

2.6         TWO-DIMENSIONAL SYSTEMS AND SURFACE ENERGY             121

2.6.1     Surface Energy of Graphite       122

2.6.2     Surface energy of graphites ultimate nanostructure
Graphene           126

STUDY PROBLEMS TO CHAPTER 2:       128

 

CHAPTER 3: CONSTRAINED CONDENSED FLUID MOLECULAR SYSTEMS         137

3.1         MOLECULES AND PHASE PROPERTIES              137

3.1.1     Molecules and Molecular Interactions 137

3.1.2     Molecular Interactions and Van der Waals Equation of State   139

3.1.3     Gas Bulk Critical and Molecular Properties      144

3.2         METASTABLE LIQUID PHENOMENA      151

3.2.1     Metastable Liquids and Cavitation        152

3.2.2     Homogeneous Nucleation Process of Vapor Bubbles  155

3.2.3     Free Energy of Bubble Nucleation         156

3.2.4     Probability of Bubble Nucleation and Liquid Tensile Strength  159

3.3         HYDRAULIC TRANSPORT IN CAPILLARIES AND BOUNDARY CONDITIONS     
163

3.3.1     Bending Stresses on Vascular Plants and Drought Embolism  164

3.3.2     Water Transport Darcys Law 167

3.3.3     Poiseuille Flow in Capillaries Slip Boundary
Condition             173

3.3.4     Molecular Conformations at Interfaces and Apparent Slip       
181

3.3.5     Surface Roughness and Heterogeneous Slip    184

3.4         NANOCONDUIT FLOW BOUNDARY LAYER MODEL AND
NANOCAPILLARIES              188

3.4.1     Boundary Layer Model 188

3.4.2     Nanoconduit Flow through Carbon Nanotubes               193

3.5         MEMBRANE TRANSPORT           198

3.5.1     Osmosis             198

3.5.2     Water Purification and Desalination Reverse Osmosis           
203

3.5.3     Transport Mechanisms through Solvent Swollen Polymer
Membranes               205

3.5.4     Polymer Membranes and Nanoporous Transport           222

STUDY PROBLEMS TO CHAPTER 3:       225

 

CHAPTER 4: FIRST STEPS TOWARDS QUANTUM MECHANICS 233

4.1         THERMAL EMISSION: FROM BOLTZMANN TO QUANTUM DISTRIBUTION LAW
234

4.1.1     Blackbody Radiator       234

4.1.2     Rayleigh and Jeans Standing Wave Model      238

4.1.3     Quantum Distribution Law - Plancks Law         241

4.1.4     Principle Distribution Laws in Nature  243

4.1.5     Microsystems and the Chemical Potential        248

4.2         FIRST VIEW INTO QUANTUM MECHANICS        250

4.2.1     Photoelectric Effects   251

4.2.2     Wave - Particle Duality 253

4.2.3     The Frank-Hertz Experiment     255

4.3         ATOM STRUCTURE AND A SIMPLE MODEL        256

4.3.1     The Electron     256

4.3.2     Hydrogen Emission Spectrum 258

4.3.3     Bohr Model of the Atom              260

4.3.4     Wave-Particle Duality and Dispersion Relation               262

4.4         WAVE AND PARTICLE INTERFERENCES AND PROBABILITY      265

4.4.1     Single Slit Interference 266

4.4.2     Double Slit Interference              267

4.4.3     Screen Intensity and Probability             269

4.4.4     Uncertainty Principle and Macroscopicity         270

4.5         QUANTUM WAVE THEORY, QUANTUM CONSTRAINTS AND UNCERTAINTY     
272

4.5.1     One-Dimensional Schrödinger Wave Equation               273

4.5.2     Particle in One-Dimensional Box           275

4.5.3     Hydrogen Atom: Electron Wave Function and Energies              
280

4.5.4     Quantum Entanglement and Quantum Computing       282

PROBLEM SECTION TO CHAPTER 4      286

 

CHAPTER 5: ELECTRON TRANSPORT AND ELECTRONIC STRUCTURE OF
MOLECULES             295

5.1         ELECTRON TRANSPORT IN ONE-DIMENSIONAL QUANTUM WIRE        295

5.1.1     Quantum Wire Energy Components     296

5.1.2     Electron Scattering vs. Ballistic Transport         298

5.1.3     Single Mode Quantum Wire      299

5.1.4     Multimode Quantum and Quantum Conductance        301

5.2         ELECTRON TUNNELING             303

5.2.1     Finite 1D Potential Well               304

5.2.2     Tunneling Effect: Tunnel Current            307

5.2.3     Scanning Tunneling Microscopy             312

5.3         SINGLE ELECTRON DEVICE TECHNOLOGY      315

5.3.1     Energy Discretization of Nanoparticles               315

5.3.2     Single Electron Box       317

5.3.3     Single Electron Transistor          320

5.4         ELECTRONS, ENERGY STATES, AND DISTRIBUTION IN
ATOMS               325

5.4.1     Hydrogen Atom: Solution of the Schrödinger Equation 325

5.4.2     Probability and Electron Distribution   327

5.4.3     Electron Orbital- Shape - Angular Momentum 329

5.4.4     Energy Degeneracies, Spin-Orbit Coupling and Fine Structure 330

5.4.5     Relativistic Effects        334

5.5         ELECTRON DISTRIBUTION AND BONDING IN MOLECULES     335

5.5.1     -Bonding          336

5.5.2     From to -Bonding     339

5.5.3     Hybrid Molecular Orbitals         342

5.6         MOBILE ELECTRONS    343

5.6.1     Delocalized Electrons               343

5.6.2     HOMO-LUMO Levels and Chromophores          347

5.6.3     Conjugated Polymers as LED and PV Materials               350

PROBLEM SECTION TO CHAPTER 5      356

 

CHAPTER 6: ELECTRONIC STRUCTURE OF MATTER     361

6.1         ELECTRONIC STATES AND TRANSPORT IN CONDENSED MATERIAL PHASES 
361

6.1.1     Density of States            361

6.1.2     Electronic Bands and Bandgap                367

6.1.3     Semiconductor Bandgap Engineering  370

6.2         BACKGROUND ON DOPED INORGANIC SEMICONDUCTORS 373

6.2.1     Semiconductor Bandgap Engineering  373

6.2.2     Doped Semiconductors             375

6.2.3     Semiconductor p-n Junction    378

6.2.4     The Depletion Layer in the p-n Junction and External Bias        
381

6.3         PHOTOVOLTAIC CELLS               386

6.3.1     P-N Junctions and Photovoltaics Basics             386

6.3.2     Solar Cell Efficiency     394

6.3.3     Photovoltaics Beyond Crystalline Silicon           400

PROBLEM SECTION TO CHAPTER 6:     400

 

CHAPTER 7: MOLECULAR MODES AND ENERGETIC PROPERTIES        405

7.1         MOLECULAR MODES   405

7.2         BOND VIBRATIONS IN MOLECULES      408

7.2.1     The Quantum Harmonic Oscillator       408

7.2.2     Infrared Spectrum of Diatomic Molecules in Light of the Quantum
Harmonic Oscillator           412

7.2.3     Dissociation Energy and Ground-State Electronic Energy of
Diatomic                    Molecules       413

7.2.4     Stiffness of Vibrating Bonds and Vibrational Bond
Temperature             417

7.3         ROTATIONAL MOLECULAR MODE IN DIATOMIC MOLECULES 417

7.3.1     Molecular Rigid Rotor   417

7.3.2     Non-Rigid Diatomic Rotor          422

7.3.3     Rotational and Vibrational Energies      424

7.4         POLYATOMIC MOLECULES        425

7.4.1     Vibrational Modes of Polyatomic Molecules    426

7.4.2     Rotational Modes of Polyatomic Molecules      428

7.5         LATTICE VIBRATIONS - PHONONS        428

7.5.1     Harmonic Potential and Energies in Bulk Systems        429

7.5.2     Phonon Dispersion        430

7.5.3     The Acoustic Phonon Model Based on Debye  437

7.5.4     Thermal Conduction in Nanoconstrained Systems      441

PROBLEM SECTION TO CHAPTER 7:     444

 

APPENDIX         448

A.1 Acoustic Wave Equation     448

A.2 Homogeneous Second Order Differential Equations           449

A.3 Solution of the 1D Wave Equation in Cartesian Coordinates           
450

A.4 Solution to the Schrödinger Wave Equation for Hydrogen 452
René M. Overney is Professor in Chemical Engineering, University of Washington. His research interests include rational molecular engineering based on nanoscale fundamentals with a focus on enhanced electronic, photonic, ionic, energy, momentum and mass transport properties based on molecular relaxations and entropic cooperative properties in complex organic thin films. Overney's group has pioneered efforts in developing novel scanning probe methods towards mapping inter- and intra-molecular energetics and transitions in thin film and self-assembled systems.