Atnaujinkite slapukų nuostatas

Radioactive Transformations [Minkštas viršelis]

  • Formatas: Paperback / softback, 336 pages, aukštis x plotis x storis: 210x140x21 mm, weight: 408 g
  • Serija: The Silliman Memorial Lectures Series
  • Išleidimo metai: 14-Sep-2012
  • Leidėjas: Yale University Press
  • ISBN-10: 0300181302
  • ISBN-13: 9780300181302
Kitos knygos pagal šią temą:
  • Formatas: Paperback / softback, 336 pages, aukštis x plotis x storis: 210x140x21 mm, weight: 408 g
  • Serija: The Silliman Memorial Lectures Series
  • Išleidimo metai: 14-Sep-2012
  • Leidėjas: Yale University Press
  • ISBN-10: 0300181302
  • ISBN-13: 9780300181302
Kitos knygos pagal šią temą:

Radioactive Transformations describes Ernest Rutherford’s Nobel Prize-winning investigations into the mysteries of radioactive matter. In this historic work, Rutherford outlines the scientific investigations that led to and coincided with his own research—including the work of Wilhelm R ntgen, J. J. Thomson, and Marie Curie—and explains in detail the experiments that provided a glimpse at special relativity, quantum mechanics, and other concepts that would shape modern physics.

This new edition features a comprehensive introduction by Nobel Laureate Frank Wilczek which engagingly explains how Rutherford's early research led to a better understanding of topics as diverse as the workings of the atom’s nucleus, the age of our planet, and the fusion in stars.

Foreword ix
Frank Wilczek
Preface xliii
I Historical Introduction
1(36)
II Radioactive Changes in Thorium
37(33)
III The Radium Emanation
70(25)
IV Transformation of the Active Deposit of Radium
95(27)
V Active Deposit of Radium of Slow Transformation
122(26)
VI Origin and Life of Radium
148(13)
VII Transformation Products of Uranium and Actinium, and the Connection between the Radioelements
161(18)
VIII The Production of Helium from Radium and the Transformation of Matter
179(17)
IX Radioactivity of the Earth and Atmosphere
196(23)
X Properties of the α Rays
219(37)
XI Physical View of Radioactive Processes
256
Index 277
1 Introduction
1(16)
References
13(4)
Part I Multifunctional Materials
2 Nano-Micro-Macro
17(12)
2.1 Looking at Composite Materials at Different Scales
17(1)
2.2 Improving Fiber Composite Materials with Nanoscaled Particles
18(2)
2.3 Smart Material Systems
20(1)
2.4 Integration of Smart Materials on a Macroscopic Level
20(4)
2.5 Integration of Smart Materials on a Micro-and Nanoscopic Level
24(2)
2.6 Summary and Conclusion
26(3)
References
27(2)
3 Piezocomposite Transducers for Adaptive Structures
29(20)
3.1 Piezocomposite Technology
30(1)
3.2 State of the Art for Piezocomposite Transducers for Adaptive Structures
31(5)
3.3 A Modular Manufacturing Concept for Piezocomposites
36(3)
3.4 Multilayer Piezocomposites
39(5)
3.4.1 Manufacturing of Multilayer Piezocomposites
41(2)
3.4.2 Free Strain of Multilayer Piezocomposites
43(1)
3.5 Summary and Conclusion
44(5)
References
45(4)
4 Nanoscaled Boehmites' Modes of Action in a Polymer and its Carbon Fiber Reinforced Plastic
49(10)
4.1 Challenges of Future Carbon Fiber Reinforced Plastics
49(1)
4.2 Resin-Particle Interactions
50(2)
4.3 Particle-Polymer Interphases
52(2)
4.4 Selected Properties and the Nanocomposites' Particle-Network
54(1)
4.5 Conclusion: Nanoparticles' Mode of Action in CFRP
55(4)
References
57(2)
5 Advanced Flame Protection of CFRP Through Nanotechnology
59(10)
5.1 Protection Against Fire
59(4)
5.1.1 Flame Retardants for Fiber Composites
60(1)
5.1.2 Fire Tests and Supplemental Characterizations
61(2)
5.2 Materials and Methods
63(1)
5.2.1 Nanoparticles and Resins
63(1)
5.2.2 Dispersion Process and Material Characterisation
64(1)
5.3 Results and Discussion
64(5)
5.3.1 Thermal Characterization of Very Small Scale Test Specimens
64(2)
5.3.2 Comparison to Standard Fire Test Methods
66(1)
References
67(2)
6 Fundamental Characterization of Epoxy-Silica Nanocomposites Used for the Manufacturing of Fiber Reinforced Composites
69(16)
6.1 Introduction
69(1)
6.2 Materials and Preparation
70(1)
6.3 Characterization of the Nanocomposites
71(11)
6.3.1 Analysis of the Nanoparticle Distribution
71(1)
6.3.2 Rheological Properties
72(2)
6.3.3 Thermal Characterization by DMA and DSC
74(1)
6.3.4 Quantitation of Resin Shrinkage
75(1)
6.3.5 Determination of Coefficients of Thermal Expansion
76(2)
6.3.6 Static Mechanical Characterization
78(2)
6.3.7 Identification of Failure Mechanisms by Analysing the Fracture Surface Topology
80(2)
6.4 Conclusion
82(3)
References
83(2)
7 Carbon Nanotube Actuation
85(22)
7.1 Introduction
85(1)
7.2 The Actuation Phenomenon of CNT
86(1)
7.3 An Analytical Model for the Actuation Mechanism
87(1)
7.4 Experimental Setup
88(1)
7.5 Parameterization
89(1)
7.6 Electrical System
89(2)
7.7 Mechanical System
91(3)
7.8 Coupling Mechanism
94(2)
7.9 Validation of the Model
96(3)
7.10 Solid Electrolytes for CNT Based Actuators
99(1)
7.11 Specimen Processing and Experimental Setup
100(1)
7.12 Initial Test Results with Solid Electrolytes for CNA
101(2)
7.13 Conclusion
103(4)
References
104(3)
8 Piezoceramic Honeycomb Actuators
107(12)
8.1 Active Control of Mechanical Impedances
107(4)
8.2 Honeycomb Actuator Design, Fabrication and Applications
111(8)
References
115(4)
Part II Structural Mechanics
9 Validation Approach for Robust Primary Carbon Fiber-Reinforced Plastic Structures
119(12)
9.1 Terminology
119(1)
9.2 Validation Process
120(3)
9.3 Example: Stiffened CFRP Panel
123(4)
9.4 Validation Assessment
127(1)
9.5 Conclusion
128(3)
References
130(1)
10 Simulation of Fiber Composites: An Assessment
131(24)
10.1 Modeling Aspects
131(1)
10.2 Micromechanics
132(2)
10.2.1 Material Properties
132(1)
10.2.2 Micromechanical Stress
132(1)
10.2.3 Stiffness Homogenization
132(1)
10.2.4 Strength Homogenization
133(1)
10.3 Laminate Theories
134(3)
10.3.1 Laminate-Wise Approximations
134(1)
10.3.2 Layer-Wise Approximations
135(2)
10.3.3 Transverse Stresses
137(1)
10.4 Design and Optimization
137(3)
10.4.1 Initial Design
137(2)
10.4.2 Structural Optimization
139(1)
10.5 Damage and Failure
140(4)
10.5.1 Failure Criteria
140(1)
10.5.2 Damage Progression
141(1)
10.5.3 Delamination
141(1)
10.5.4 Fatigue
142(2)
10.6 Manufacturing
144(11)
10.6.1 Draping
144(1)
10.6.2 Resin Flow and Curing
144(2)
References
146(9)
11 Modeling of Manufacturing Uncertainties by Multiscale Approaches
155(12)
11.1 Classification of Manufacturing Uncertainties
155(1)
11.2 Brief Review on Multiscale Modeling
156(1)
11.3 A Novel Multiscale Modeling Approach
157(3)
11.3.1 Definition of the Local Models
158(1)
11.3.2 Global-to-Local Transition
158(1)
11.3.3 Local-to-Global Transition
159(1)
11.3.4 Numerical Determination of the Global Tangent Stiffness Operator Cm
160(1)
11.4 Numerical Example
160(3)
11.4.1 Reference Calculations
160(1)
11.4.2 Calculation with Homogenization-Based Two-Way Multiscale Approach
161(2)
11.5 Conclusion and Outlook
163(4)
References
164(3)
12 Experimental Determination of Interlaminar Material Properties of Carbon Fiber Composites
167(12)
12.1 Introduction
167(1)
12.2 Intra- and Inter-Laminar Failure Behaviour of NCF
168(1)
12.3 Interlaminar Test Methods
169(1)
12.4 A Test Setup for Interlaminar Properties Under Combined Loading
170(6)
12.4.1 Material Preparation and Specimen Production
171(1)
12.4.2 Testing and Analysis of the Results
172(2)
12.4.3 Results for Combined Interlaminar Loads
174(2)
12.5 Conclusion
176(3)
References
176(3)
13 Impact and Residual Strength Assessment Methodologies
179(10)
13.1 Failure Analysis with Damage Initiation and Degradation
179(2)
13.1.1 Damage Models for Monolithic Composites
180(1)
13.1.2 Core and Skin Damage in Sandwich Structures
180(1)
13.2 Impact Analysis
181(3)
13.2.1 Impact on a Monolithic Composite Panel
182(1)
13.2.2 Impact on a Composite Sandwich Panel
182(2)
13.3 Residual Strength Analysis
184(5)
13.3.1 CAI Analysis for Monolithic Composites
184(2)
13.3.2 CAI Analysis for Composite Sandwich Structures
186(1)
References
187(2)
14 Improved Stability Analysis of Thin Walled Stiffened and Unstiffened Composite Structures: Experiment and Simulation
189(10)
14.1 Stability Analysis of Stringer Stiffened Curved CFRP Panels
189(6)
14.1.1 Test Structures
190(1)
14.1.2 Test Preparation
191(1)
14.1.3 Test Results of a Cyclic and Collapse Test
192(1)
14.1.4 Test-Simulation Correlation
193(2)
14.2 Stability Analysis of Unstiffened CFRP Cylindrical Shells
195(4)
References
197(2)
15 Composite Process Chain Towards As-Built Design
199(12)
15.1 Current State of Composite Processes
199(1)
15.2 Continuous Composite Process Chain
200(2)
15.3 Application of Manufacturing Feedback for Fiber Placement and Curing
202(7)
15.3.1 Feedback of Effective Material Properties
203(1)
15.3.2 Feedback of Fiber Alignment
204(2)
15.3.3 Feedback of Process Induced Residual Stresses and Distortions
206(3)
15.4 Outcome of the As-Built Feedback Method
209(2)
References
209(2)
16 Innovative Testing Methods on Specimen and Component Level
211(14)
16.1 Buckling Test Facility
211(5)
16.1.1 Static Axial Loading for Cylinders and Panels
212(1)
16.1.2 Static Axial Loads Combined with Torsion for Cylinders
213(1)
16.1.3 Combined Axial Compression Shear Test Device for Curved Stiffened Panels
214(1)
16.1.4 Dynamic Loading of Cylinders
215(1)
16.2 Variable Component Test Facility
216(1)
16.3 Test Devices for Standard Testing Machines
217(1)
16.3.1 Stringer Pull-off Device
217(1)
16.3.2 3D-Biax Device
218(1)
16.4 Thermo-Mechanical Test Field
218(7)
16.4.1 Thermo-Mechanical Test Facility THERMEX
219(1)
16.4.2 High Radiation Compartment
220(1)
References
221(4)
Part III Composite Design
17 Compliant Aggregation of Functionalities
225(12)
17.1 Motivation and Definition
225(1)
17.2 Smart Material Design
226(4)
17.2.1 Resin Modification
227(1)
17.2.2 Fiber Metal Laminates
228(1)
17.2.3 Structural Material
228(1)
17.2.4 Local Reinforcement
229(1)
17.2.5 Abrasion Protection
229(1)
17.3 Pro-Composite Design
230(1)
17.4 Structure Integrated Smart Components
231(3)
17.4.1 De-Icing
231(1)
17.4.2 Structure Integrated Lighting System
232(1)
17.4.3 Actuator Induced Morphing
233(1)
17.5 Adaptive Systems
234(3)
References
235(2)
18 Boom Concept for Gossamer Deployable Space Structures
237(14)
18.1 Large Gossamer Space Structures
237(5)
18.1.1 Exemplary Deployable Space Structures
237(3)
18.1.2 Challenges and Needs
240(1)
18.1.3 Applications
240(2)
18.2 DLR's Deployable Boom
242(4)
18.2.1 Concept
243(1)
18.2.2 Mechanical and Thermal Properties
243(1)
18.2.3 Deployment Control
244(2)
18.3 Tests
246(3)
18.3.1 Objectives
247(1)
18.3.2 Test Procedure
247(1)
18.3.3 Test Results
247(2)
18.4 Conclusion and Perspectives
249(2)
References
249(2)
19 Local Metal Hybridization of Composite Bolted Joints
251(12)
19.1 Local Hybridization
252(2)
19.2 Improvement of Bearing Strength
254(2)
19.3 Reinforcement of Bolted Joints
256(2)
19.4 The Transition Region
258(2)
19.5 Exemplary Applications
260(3)
References
261(2)
20 Payload Adapter Made from Fiber-Metal-Laminate Struts
263(12)
20.1 State-of-the-Art Construction Technologies for Payload Adapters
263(1)
20.2 Current Fiber Metal Laminates
264(1)
20.3 Framework Design for an Upper Stage Adapter
265(1)
20.4 Fiber Metal Laminates Increase Degree Capacity Utilization of CFRP-Strut
265(2)
20.5 Analytical Preliminary Design of Framework-Design
267(5)
20.5.1 Geometrical Relationships of Struts in a Conical Framework
267(1)
20.5.2 Estimation of Local and Global Buckling Stress of Struts
268(1)
20.5.3 Radial Loads in Frames
269(1)
20.5.4 Maximum Bending Moment in Frames
269(2)
20.5.5 Weight Saving Potential of Framework Configurations
271(1)
20.6 FEM Analysis for Preferred Framework Configuration
272(1)
20.7 Experimental Investigation of Unidirectional CFRP-Steel-Laminates
272(1)
20.8 Conclusion
273(2)
References
273(2)
21 About the Spring-In Phenomenon: Quantifying the Effects of Thermal Expansion and Chemical Shrinkage
275(10)
21.1 Problem's Topicality and Influence Nowadays
275(1)
21.2 Sources of Spring-In Deformations
276(2)
21.3 Analytical Investigation of the Spring-In Effect and its Contributions
278(3)
21.4 Experimental Investigations
281(1)
21.5 Conclusions
282(3)
References
282(3)
22 Carbon Fiber Composite B-Rib for a Next Generation Car
285(12)
22.1 Challenges of Future Individual Mobility
285(2)
22.2 Novel Vehicle Concept
287(4)
22.2.1 Composite B-Rib: An Essential Component of the Vehicle Concept
287(1)
22.2.2 Functional Principle of the Composite B-Rib under Side Impact
288(3)
22.3 Challenges in Design and Manufacture
291(4)
22.4 Validation by Means of Static and Dynamic Tests
295(1)
22.5 Conclusion & Perspectives
295(2)
References
296(1)
23 Automated Scarfing Process for Bonded Composite Repairs
297(14)
23.1 Motivation
297(2)
23.2 The Automatic Scarfing Process
299(1)
23.3 Machine Design for the Automatic Scarfing Process
300(4)
23.4 Software Framework for the Automated Scarfing Concept
304(2)
23.5 Summary and Outlook
306(5)
References
307(4)
Part IV Composite Technology
24 Self-Controlled Composite Processing
311(6)
24.1 Introduction
311(1)
24.2 Process Chain
312(1)
24.3 Options for Self-Controlled Lay-up/Preforming Processes
313(2)
24.4 Options for Self-Controlled Infusion/Curing Processes
315(2)
References
316(1)
25 Continuous Preforming with Variable Web Height Adjustment
317(8)
25.1 Introduction
317(2)
25.2 Continuous Preforming with Variable Web Height Adjustment
319(2)
25.3 Evaluation of Performance
321(2)
25.3.1 Performance
321(1)
25.3.2 Preform Shape and Tolerance Capability
321(2)
25.4 Conclusion
323(2)
References
323(2)
26 Sensitivity Analysis of Influencing Factors on Impregnation Process of Closed Mould RTM
325(14)
26.1 Introduction
325(2)
26.2 Resin Flow in Closed Mould RTM
327(2)
26.2.1 Resin Flow in Free Cross-Sectional Areas
327(1)
26.2.2 Resin Flow in Porous Media
328(1)
26.3 Analysis of Influencing Factors
329(3)
26.3.1 Geometric Influence
329(1)
26.3.2 Permeability of Fiber Reinforcement
330(2)
26.3.3 Resin Properties
332(1)
26.4 Sensitivity Analysis
332(3)
26.4.1 Impact of Influencing Factors Within the Range of Composites
332(1)
26.4.2 Impact of Tolerances Within the Same Component
333(2)
26.5 Conclusion
335(4)
References
336(3)
27 Inductive Preforming
339(10)
27.1 Introduction
339(1)
27.2 Inductive Heating Mechanism
340(1)
27.3 Method to Identify the Parameter Influence
341(2)
27.4 Parameter Influence
343(3)
27.4.1 Preform Thickness
343(1)
27.4.2 Material Parameters
344(1)
27.4.3 Compaction Pressure
345(1)
27.4.4 Distance to the Inductor
345(1)
27.4.5 Frequency
346(1)
27.4.6 Activation Time and Power Level
346(1)
27.5 Mathematical Model to Predict Resulting Heat at Each Layer
346(1)
27.6 Conclusion
347(2)
References
347(2)
28 Combined Prepreg and Resin Infusion Technologies
349(14)
28.1 Introduction
349(2)
28.1.1 Prepreg Technology
350(1)
28.1.2 Infusion Technology
350(1)
28.1.3 Integrated Technologies
351(1)
28.2 Combined Prepreg and Resin Infusion Technology
351(9)
28.2.1 Effects in the Transition of Prepreg to Infusion Resin
352(3)
28.2.2 Mechanical Tests
355(3)
28.2.3 Sample Structures
358(2)
28.3 Conclusions
360(3)
References
361(2)
29 Interactive Manufacturing Process Parameter Control
363(12)
29.1 Introduction
363(1)
29.2 Typical Production Processes for Composite Structures
364(1)
29.3 Crucial Manufacturing Process Parameters
364(2)
29.4 Interactive Manufacturing Process Control Using Ultrasound
366(3)
29.4.1 Interactive Thickness/Fiber Volume Content Control
367(1)
29.4.2 Interactive Cure Control
368(1)
29.4.3 Interactive Void Content Control
368(1)
29.5 Application Examples
369(2)
29.5.1 Manufacturing of Omega Shaped Frame Structures
369(2)
29.5.2 Manufacturing of Coupon Panels
371(1)
29.6 Conclusion
371(4)
References
372(3)
Part V Adaptronics
30 Autonomous Composite Structures
375(6)
30.1 Limitations of Purely Passive Structural Design
375(2)
30.2 General Aspects of Smart Structures
377(1)
30.3 Health Monitoring for Damage Detection
378(1)
30.4 Noise Reduction with Active Control
378(1)
30.5 Energy Harvesting
379(2)
References
380(1)
31 Design of a Smart Leading Edge Device
381(10)
31.1 Introduction
381(1)
31.2 Structural Design Process
382(4)
31.3 Evaluation of Results and Final Design
386(4)
31.3.1 Performance in High-Lift Configuration
387(1)
31.3.2 Performance in Cruise Configuration
388(1)
31.3.3 Estimation of the Actuation Torque
389(1)
31.4 Summary and Conclusion
390(1)
References
390(1)
32 Experimental Investigation of an Active Twist Model Rotor Blade Under Centrifugal Loads
391(18)
32.1 Introduction
393(1)
32.2 State of the Art
393(1)
32.3 Design and Manufacturing of the Active Twist Blade
394(3)
32.4 Experimental Test Setup
397(1)
32.5 Experimental Results
398(3)
32.6 Rotor Simulation
401(2)
32.7 Noise and Vibration Benefits
403(6)
References
407(2)
33 Noise and Vibration Reduction with Hybrid Electronic Networks and Piezoelectric Transducers
409(8)
33.1 Piezoelectric Shunt Damping
409(3)
33.2 Design of Autonomous Saw Head Tool
412(1)
33.3 Experimental Validation
413(2)
33.3.1 Results in the Non-Rotating System
413(1)
33.3.2 Results in the Rotating System
414(1)
33.4 Conclusion
415(2)
References
416(1)
34 Reduction of Turbulent Boundary Layer Noise with Actively Controlled Carbon Fiber Reinforced Plastic Panels
417(10)
34.1 State of Technology
418(1)
34.2 Active Panel
418(1)
34.3 Actuator Placement
418(1)
34.4 System Identification
419(1)
34.5 Control Concepts
420(2)
34.6 Experiments
422(2)
34.7 Achieved Results
424(3)
References
424(3)
35 Active Structure Acoustic Control for a Truck Oil Pan
427(12)
35.1 Motivation
427(2)
35.2 Structural Dynamics and Suitable Actuator Positions
429(2)
35.3 Vibroacoustic Coupling and ASAC Efficiency Estimation
431(3)
35.4 The Serial Production Oil Pan Demonstrator
434(1)
35.5 Conclusions
435(4)
References
436(3)
36 Experimental Study of an Active Window for Silent and Comfortable Vehicle Cabins
439(10)
36.1 State of Technology
440(1)
36.2 Real-Time Control System of the Active Windshield
440(1)
36.3 Definition of Sensors and Actuators
441(1)
36.4 Multi-Reference Test and System Identification
442(1)
36.5 Implementation and Evaluation of the Control Algorithms
443(3)
36.5.1 State-Feedback Control
443(2)
36.5.2 Adaptive Feedforward Control
445(1)
36.6 Conclusion
446(3)
References
446(3)
37 Structural Health Monitoring Based on Guided Waves
449
37.1 Introduction
450(1)
37.2 Visualisation of the Lamb Wave Propagation Field
451(2)
37.3 Virtual Design and Evaluation of Sensors
453(1)
37.4 Mode Selective Actuator Design and Manufacturing Process
454(4)
37.5 Concept of Damage Detection in a Helicopter Tailboom
458(3)
37.6 Conclusion
461
References
461
Ernest Rutherford, famous for his discoveries in nuclear physics, received the Nobel Prize in Chemistry in 1908 for his research on radioactive substances. Frank Wilczek shared the 2004 Nobel Prize in Physics for his work on the theory of quantum chromodynamics. He is the Herman Feshbach Professor of Physics at the Massachusetts Institute of Technology and the author of three books, including The Lightness of Being: Mass, Ether, and the Unification of Forces.