Atnaujinkite slapukų nuostatas

El. knyga: Ramsey Theory on the Integers

  • Formatas: 384 pages
  • Serija: Student Mathematical Library
  • Išleidimo metai: 11-Oct-2014
  • Leidėjas: American Mathematical Society
  • ISBN-13: 9781470420000
  • Formatas: 384 pages
  • Serija: Student Mathematical Library
  • Išleidimo metai: 11-Oct-2014
  • Leidėjas: American Mathematical Society
  • ISBN-13: 9781470420000

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Ramsey theory is the study of the structure of mathematical objects that is preserved under partitions. In its full generality, Ramsey theory is quite powerful, but can quickly become complicated. By limiting the focus of this book to Ramsey theory applied to the set of integers, the authors have produced a gentle, but meaningful, introduction to an important and enticing branch of modern mathematics. Ramsey Theory on the Integers offers students a glimpse into the world of mathematical research and the opportunity for them to begin pondering unsolved problems.

For this new edition, several sections have been added and others have been significantly updated. Among the newly introduced topics are: rainbow Ramsey theory, an inequality version of Schur's theorem, monochromatic solutions of recurrence relations, Ramsey results involving both sums and products, monochromatic sets avoiding certain differences, Ramsey properties for polynomial progressions, generalizations of the Erdos-Ginzberg-Ziv theorem, and the number of arithmetic progressions under arbitrary colorings. Many new results and proofs have been added, most of which were not known when the first edition was published. Furthermore, the book's tables, exercises, lists of open research problems, and bibliography have all been significantly updated.

This innovative book also provides the first cohesive study of Ramsey theory on the integers. It contains perhaps the most substantial account of solved and unsolved problems in this blossoming subject. This breakthrough book will engage students, teachers, and researchers alike.

Recenzijos

This is an excellent undergraduate text which provides students with an introduction to research; it is also a source for all those who are interested in combinatorial or number theoretic problems... The textbook is carefully written. I recommend it to students interested in combinatorics and to their teachers as well." - Monatshafte für Mathematik

List of Tables
xi
Preface to the Second Edition xiii
Acknowledgements xv
Preface to the First Edition xvii
Chapter 1 Preliminaries
1(22)
§1.1 The Pigeonhole Principle
3(3)
§1.2 Ramsey's Theorem
6(3)
§1.3 Some Notation
9(2)
§1.4 Three Classical Theorems
11(3)
§1.5 A Little More Notation
14(3)
§1.6 Exercises
17(3)
§1.7 Research Problems
20(1)
§1.8 References
21(2)
Chapter 2 Van der Waerden's Theorem
23(44)
§2.1 The Compactness Principle
27(2)
§2.2 Alternate Forms of van der Waerden's Theorem
29(2)
§2.3 Computing van der Waerden Numbers
31(7)
§2.4 Bounds on van der Waerden Numbers
38(9)
§2.5 The Erdos and Turan Function
47(4)
§2.6 On the Number of Monochromatic Arithmetic Progressions
51(2)
§2.7 Proof of van der Waerden's Theorem
53(4)
§2.8 Exercises
57(2)
§2.9 Research Problems
59(3)
§2.10 References
62(5)
Chapter 3 Supersets of AP
67(46)
§3.1 Quasi-Progressions
68(9)
§3.2 Generalized Quasi-Progressions
77(4)
§3.3 Descending Waves
81(2)
§3.4 Semi-Progressions
83(9)
§3.5 Iterated Polynomials
92(10)
§3.6 Arithmetic Progressions as Recurrence Solutions
102(2)
§3.7 Exercises
104(3)
§3.8 Research Problems
107(4)
§3.9 References
111(2)
Chapter 4 Subsets of AP
113(34)
§4.1 Finite Gap Sets
115(6)
§4.2 Infinite Gap Sets
121(19)
§4.3 Exercises
140(2)
§4.4 Research Problems
142(3)
§4.5 References
145(2)
Chapter 5 Other Generalizations of w(k; r)
147(36)
§5.1 Sequences of Type x, ax + d, bx + 2d
147(16)
§5.2 Homothetic Copies of Sequences
163(5)
§5.3 Sequences of Type x, x + d, x + 2d + b
168(7)
§5.4 Polynomial Progressions
175(2)
§5.5 Exercises
177(2)
§5.6 Research Problems
179(2)
§5.7 References
181(2)
Chapter 6 Arithmetic Progressions (mod m)
183(20)
§6.1 The Family of Arithmetic Progressions (mod m)
184(3)
§6.2 A Seemingly Smaller Family is More Regular
187(6)
§6.3 The Degree of Regularity
193(3)
§6.4 Exercises
196(2)
§6.5 Research Problems
198(2)
§6.6 References
200(3)
Chapter 7 Other Variations on van der Waerden's Theorem
203(18)
§7.1 The Function m(k)
203(4)
§7.2 Monochromatic Sets a(S + b)
207(2)
§7.3 Having Most Elements Monochromatic
209(4)
§7.4 Permutations Avoiding Arithmetic Progressions
213(4)
§7.5 Exercises
217(1)
§7.6 Research Problems
217(2)
§7.7 References
219(2)
Chapter 8 Schur's Theorem
221(30)
§8.1 The Basic Theorem
222(12)
§8.2 A Generalization of Schur's Theorem
234(5)
§8.3 Refinements of Schur's Theorem
239(4)
§8.4 Schur Inequality
243(2)
§8.5 Exercises
245(2)
§8.6 Research Problems
247(1)
§8.7 References
248(3)
Chapter 9 Rado's Theorem
251(46)
§9.1 Rado's Single Equation Theorem
251(17)
§9.2 Some Rado Numbers
268(11)
§9.3 Generalizations of the Single Equation Theorem
279(6)
§9.4 Solutions to Linear Recurrences
285(2)
§9.5 Mixing Addition and Multiplication
287(3)
§9.6 Exercises
290(2)
§9.7 Research Problems
292(2)
§9.8 References
294(3)
Chapter 10 Other Topics
297(56)
§10.1 Monochromatic Sums
297(5)
§10.2 Doublefree Sets
302(1)
§10.3 Diffsequences
303(15)
§10.4 Brown's Lemma
318(3)
§10.5 Monochromatic Sets Free of Prescribed Differences
321(5)
§10.6 Patterns in Colorings
326(2)
§10.7 Rainbow Ramsey Theory on the Integers
328(6)
§10.8 Zero-Sums and m-Sets
334(11)
§10.9 Exercises
345(1)
§10.10 Research Problems
346(3)
§10.11 References
349(4)
Notation 353(4)
Bibliography 357(24)
Index 381
Bruce M. Landman, State University of West Georgia, Carrollton, GA, USA.

Aaron Robertson, Colgate University, Hamilton, NY, USA.