Foreword |
|
xxv | |
Preface |
|
xxvii | |
Acknowledgments |
|
xxix | |
Authors |
|
xxxi | |
|
SECTION I Soft-Computing Concepts |
|
|
|
|
3 | (38) |
|
|
3 | (5) |
|
1.1.1 What is Soft Computing? |
|
|
4 | (1) |
|
1.1.2 Soft Computing versus Hard Computing |
|
|
5 | (2) |
|
1.1.3 Soft-Computing Systems |
|
|
7 | (1) |
|
1.2 Artificial Intelligence |
|
|
8 | (7) |
|
1.2.1 What is Artificial Intelligence? |
|
|
9 | (1) |
|
1.2.2 Problem Solving in AI |
|
|
10 | (4) |
|
1.2.3 Logic in Artificial Intelligence |
|
|
14 | (1) |
|
1.3 Soft-Computing Techniques |
|
|
15 | (4) |
|
1.3.1 Artificial Neural Networks |
|
|
15 | (1) |
|
|
16 | (1) |
|
1.3.3 Evolutionary Algorithm |
|
|
17 | (1) |
|
|
18 | (1) |
|
|
19 | (4) |
|
1.4.1 What are Expert Systems? |
|
|
20 | (1) |
|
1.4.2 Expert System Design |
|
|
21 | (1) |
|
1.4.3 High-End Planning and Autonomous Systems |
|
|
22 | (1) |
|
|
23 | (1) |
|
|
23 | (1) |
|
1.5.2 Functional Approximation |
|
|
24 | (1) |
|
|
24 | (1) |
|
|
24 | (4) |
|
|
25 | (2) |
|
|
27 | (1) |
|
|
27 | (1) |
|
|
28 | (2) |
|
1.7.1 What is Machine Learning? |
|
|
28 | (1) |
|
1.7.2 Historical Database |
|
|
28 | (1) |
|
|
29 | (1) |
|
|
29 | (1) |
|
1.8 Handling Impreciseness |
|
|
30 | (1) |
|
1.8.1 Uncertainties in Data |
|
|
30 | (1) |
|
|
30 | (1) |
|
|
31 | (3) |
|
|
31 | (1) |
|
1.9.2 Fuzzy C-Means Clustering |
|
|
32 | (1) |
|
1.9.3 Subtractive Clustering |
|
|
33 | (1) |
|
1.10 Hazards of Soft Computing |
|
|
34 | (1) |
|
1.11 Road Map for the Future |
|
|
34 | (2) |
|
|
34 | (1) |
|
|
35 | (1) |
|
1.11.3 Computational Constraints |
|
|
35 | (1) |
|
1.11.4 Analogy with the Human Brain |
|
|
35 | (1) |
|
1.11.5 What to Expect in the Future |
|
|
35 | (1) |
|
|
36 | (5) |
|
|
36 | (1) |
|
|
37 | (1) |
|
|
38 | (1) |
|
|
38 | (1) |
|
|
39 | (1) |
|
|
39 | (1) |
|
Programming and Practical Questions |
|
|
40 | (1) |
|
Chapter 2 Artificial Neural Networks I |
|
|
41 | (34) |
|
2.1 Artificial Neural Networks |
|
|
41 | (2) |
|
|
41 | (2) |
|
2.2 The Biological Neuron |
|
|
43 | (1) |
|
2.3 The Artificial Neuron |
|
|
44 | (2) |
|
|
44 | (1) |
|
2.3.2 The Processing of the Neuron |
|
|
45 | (1) |
|
|
46 | (1) |
|
2.4 Multilayer Perceptron |
|
|
46 | (5) |
|
|
47 | (1) |
|
|
47 | (1) |
|
2.4.3 Activation Functions |
|
|
48 | (2) |
|
2.4.4 Feed-Forward Neural Network |
|
|
50 | (1) |
|
|
51 | (4) |
|
2.5.1 Functional Prediction |
|
|
51 | (1) |
|
|
52 | (1) |
|
|
53 | (1) |
|
2.5.4 The Problem of Nonlinear Separability |
|
|
53 | (1) |
|
|
54 | (1) |
|
2.6 Types of Data Involved |
|
|
55 | (1) |
|
|
55 | (9) |
|
|
56 | (1) |
|
2.7.2 The Stages of Supervised Learning |
|
|
57 | (1) |
|
|
57 | (1) |
|
|
58 | (1) |
|
|
59 | (1) |
|
2.7.6 Variable Learning Rate |
|
|
60 | (1) |
|
|
60 | (1) |
|
|
61 | (1) |
|
2.7.9 Back Propagation Algorithm |
|
|
61 | (1) |
|
2.7.10 Steepest Descent Approach |
|
|
61 | (1) |
|
2.7.11 Mathematical Analysis of the BPA Expression |
|
|
62 | (2) |
|
|
64 | (2) |
|
|
64 | (1) |
|
|
65 | (1) |
|
|
65 | (1) |
|
|
66 | (1) |
|
2.9 Example of Time Series Forecasting |
|
|
66 | (3) |
|
2.9.1 Problem Description |
|
|
66 | (1) |
|
|
67 | (1) |
|
|
67 | (1) |
|
|
68 | (1) |
|
|
68 | (1) |
|
|
69 | (6) |
|
|
69 | (1) |
|
|
70 | (2) |
|
|
72 | (1) |
|
|
72 | (1) |
|
|
73 | (2) |
|
Chapter 3 Artificial Neural Networks II |
|
|
75 | (28) |
|
3.1 Types of Artificial Neural Networks |
|
|
75 | (2) |
|
3.1.1 Unsupervised Learning |
|
|
75 | (1) |
|
3.1.2 Reinforcement Learning |
|
|
76 | (1) |
|
3.2 Radial Basis Function Network |
|
|
77 | (3) |
|
|
77 | (1) |
|
3.2.2 Network Architecture |
|
|
78 | (1) |
|
3.2.3 Mathematical Analysis |
|
|
78 | (1) |
|
|
79 | (1) |
|
3.3 Learning Vector Quantization |
|
|
80 | (4) |
|
|
80 | (1) |
|
|
81 | (1) |
|
3.3.3 Mathematical Modeling |
|
|
81 | (1) |
|
|
82 | (1) |
|
|
82 | (1) |
|
3.3.4.2 LVQ 2.1 Algorithm |
|
|
83 | (1) |
|
|
84 | (2) |
|
|
84 | (1) |
|
|
84 | (1) |
|
3.4.3 Mathematical Analysis |
|
|
85 | (1) |
|
|
85 | (1) |
|
3.5 Recurrent Neural Network |
|
|
86 | (1) |
|
|
86 | (1) |
|
|
86 | (1) |
|
|
87 | (1) |
|
3.6 Hopfield Neural Network |
|
|
87 | (3) |
|
|
88 | (1) |
|
|
88 | (1) |
|
3.6.3 Mathematical Modeling |
|
|
88 | (1) |
|
|
89 | (1) |
|
3.7 Adaptive Resonance Theory |
|
|
90 | (2) |
|
|
90 | (1) |
|
|
90 | (1) |
|
|
91 | (1) |
|
3.8 Character Recognition by Commonly Used ANNs |
|
|
92 | (11) |
|
3.8.1 Problem Description |
|
|
92 | (1) |
|
|
93 | (1) |
|
|
93 | (1) |
|
3.8.4 Solution by Radial Basis Function Network |
|
|
93 | (1) |
|
3.8.5 Solution by Learning Vector Quantization |
|
|
93 | (1) |
|
3.8.6 Solution by Self-Organizing Map |
|
|
94 | (1) |
|
3.8.7 Solution by Recurrent Neural Network |
|
|
95 | (1) |
|
3.8.8 Solution by Hopfield Neural Network |
|
|
96 | (1) |
|
|
97 | (1) |
|
|
97 | (3) |
|
|
100 | (1) |
|
|
100 | (1) |
|
|
101 | (2) |
|
Chapter 4 Fuzzy Inference Systems |
|
|
103 | (44) |
|
|
103 | (1) |
|
|
104 | (1) |
|
|
104 | (4) |
|
|
104 | (1) |
|
4.3.2 Problems with Nonfuzzy Logic |
|
|
105 | (2) |
|
|
107 | (1) |
|
4.3.4 When Not to Use Fuzzy |
|
|
107 | (1) |
|
|
108 | (1) |
|
|
108 | (4) |
|
4.4.1 Gaussian Membership Functions |
|
|
109 | (1) |
|
4.4.2 Triangular Membership Function |
|
|
110 | (1) |
|
4.4.3 Sigmoidal Membership Function |
|
|
110 | (1) |
|
4.4.4 Other Membership Functions |
|
|
111 | (1) |
|
4.5 Fuzzy Logical Operators |
|
|
112 | (8) |
|
|
113 | (1) |
|
4.5.1.1 Realization of Min and Product |
|
|
113 | (2) |
|
|
115 | (1) |
|
4.5.2.1 Realization of Max |
|
|
115 | (2) |
|
|
117 | (1) |
|
|
118 | (2) |
|
|
120 | (4) |
|
|
120 | (1) |
|
4.6.1.1 Realization of Sum and Max |
|
|
120 | (1) |
|
|
121 | (3) |
|
4.7 Fuzzy Inference Systems |
|
|
124 | (6) |
|
4.7.1 Fuzzy Inference System Design |
|
|
124 | (1) |
|
|
125 | (1) |
|
4.7.3 Illustrative Example |
|
|
126 | (3) |
|
|
129 | (1) |
|
|
130 | (4) |
|
|
130 | (2) |
|
4.8.2 Representations of T2 FS |
|
|
132 | (1) |
|
4.8.3 Solving a T2 Fuzzy System |
|
|
132 | (2) |
|
|
134 | (2) |
|
|
134 | (1) |
|
|
135 | (1) |
|
4.9.3 Intuitionistic Fuzzy Sets |
|
|
135 | (1) |
|
4.10 Sugeno Fuzzy Systems |
|
|
136 | (1) |
|
4.11 Example: Fuzzy Controller |
|
|
136 | (11) |
|
4.11.1 Problem Description |
|
|
136 | (1) |
|
4.11.2 Inputs and Outputs |
|
|
137 | (1) |
|
4.11.3 Membership Functions |
|
|
138 | (2) |
|
|
140 | (1) |
|
4.11.5 Results and Simulation |
|
|
140 | (2) |
|
|
142 | (1) |
|
|
142 | (3) |
|
|
145 | (1) |
|
|
145 | (1) |
|
|
146 | (1) |
|
Chapter 5 Evolutionary Algorithms |
|
|
147 | (34) |
|
5.1 Evolutionary Algorithms |
|
|
147 | (1) |
|
|
148 | (1) |
|
5.3 Biological Inspiration |
|
|
148 | (1) |
|
|
149 | (8) |
|
|
149 | (1) |
|
|
150 | (2) |
|
|
152 | (1) |
|
|
153 | (3) |
|
|
156 | (1) |
|
|
156 | (1) |
|
|
157 | (1) |
|
|
157 | (1) |
|
5.5.2 Proportional Scaling |
|
|
158 | (1) |
|
|
158 | (1) |
|
|
158 | (2) |
|
5.6.1 Roulette Wheel Selection |
|
|
158 | (1) |
|
5.6.2 Stochastic Universal Sampling |
|
|
159 | (1) |
|
|
159 | (1) |
|
5.6.4 Tournament Selection |
|
|
159 | (1) |
|
5.6.5 Other Selection Methods |
|
|
160 | (1) |
|
|
160 | (1) |
|
|
160 | (1) |
|
|
161 | (1) |
|
5.7.3 Variable Mutation Rate |
|
|
161 | (1) |
|
|
161 | (1) |
|
5.8.1 One-Point Crossover |
|
|
161 | (1) |
|
5.8.2 Two-Point Crossover |
|
|
161 | (1) |
|
5.8.3 Scattered Crossover |
|
|
162 | (1) |
|
5.8.4 Intermediate Crossover |
|
|
162 | (1) |
|
5.8.5 Heuristic Crossover |
|
|
162 | (1) |
|
5.9 Other Genetic Operators |
|
|
162 | (1) |
|
|
163 | (1) |
|
|
163 | (1) |
|
5.9.3 Hard and Soft Mutation |
|
|
163 | (1) |
|
|
163 | (1) |
|
|
163 | (4) |
|
|
165 | (2) |
|
|
167 | (1) |
|
5.12 Grammatical Evolution |
|
|
168 | (2) |
|
5.13 Other Optimization Techniques |
|
|
170 | (3) |
|
5.13.1 Particle Swarm Optimization |
|
|
170 | (1) |
|
5.13.2 Ant Colony Optimizations |
|
|
171 | (2) |
|
5.14 Metaheuristic Search |
|
|
173 | (1) |
|
5.15 Traveling Salesman Problem |
|
|
173 | (8) |
|
5.15.1 Problem Description |
|
|
173 | (1) |
|
|
174 | (1) |
|
|
174 | (1) |
|
|
174 | (1) |
|
|
175 | (1) |
|
|
176 | (1) |
|
|
176 | (3) |
|
|
179 | (1) |
|
|
179 | (1) |
|
|
179 | (2) |
|
|
181 | (34) |
|
|
181 | (1) |
|
6.2 Key Takeaways from Individual Systems |
|
|
182 | (1) |
|
6.2.1 Artificial Neural Networks |
|
|
182 | (1) |
|
|
182 | (1) |
|
|
182 | (1) |
|
6.2.4 Logic and AI-Based Systems |
|
|
182 | (1) |
|
6.3 Adaptive Neuro-Fuzzy Inference Systems |
|
|
182 | (6) |
|
6.3.1 General Architecture |
|
|
183 | (1) |
|
|
183 | (1) |
|
|
183 | (1) |
|
|
184 | (1) |
|
|
184 | (1) |
|
|
184 | (1) |
|
|
184 | (1) |
|
6.3.2 Problem Solving in ANFIS |
|
|
184 | (1) |
|
|
185 | (1) |
|
6.3.2.2 Clustering Training Data |
|
|
185 | (1) |
|
6.3.2.3 Parameterization of the FIS |
|
|
185 | (1) |
|
|
185 | (1) |
|
|
185 | (1) |
|
|
185 | (1) |
|
6.3.3.1 Back Propagation Algoritm |
|
|
185 | (1) |
|
|
186 | (1) |
|
|
186 | (1) |
|
6.3.5 Convergence in ANFIS |
|
|
186 | (1) |
|
6.3.6 Application in a Real Life Problem |
|
|
186 | (2) |
|
6.4 Evolutionary Neural Networks |
|
|
188 | (4) |
|
6.4.1 Evolving a Fixed-Structure ANN |
|
|
188 | (1) |
|
|
189 | (1) |
|
6.4.1.2 Genetic Operators |
|
|
189 | (1) |
|
|
189 | (1) |
|
|
190 | (1) |
|
6.4.2 Evolving-Variable Structure ANN |
|
|
191 | (1) |
|
|
191 | (1) |
|
6.4.2.2 Grammatical Encoding |
|
|
192 | (1) |
|
|
192 | (1) |
|
6.4.3 Evolving Learning Rule |
|
|
192 | (1) |
|
|
192 | (8) |
|
6.5.1 Evolving a Fixed-Structure FIS |
|
|
193 | (1) |
|
6.5.1.1 Experimental Verification |
|
|
194 | (3) |
|
6.5.2 Evolving-a Variable-Structured FIS |
|
|
197 | (3) |
|
6.6 Fuzzy Artificial Neural Networks with Fuzzy Inputs |
|
|
200 | (3) |
|
|
200 | (1) |
|
6.6.2 Fuzzy Arithmetic Operations |
|
|
200 | (2) |
|
|
202 | (1) |
|
|
202 | (1) |
|
6.7 Rule Extraction from ANN |
|
|
203 | (2) |
|
6.7.1 Need of Rule Extraction |
|
|
203 | (1) |
|
6.7.2 System Inputs Outputs, and Performance |
|
|
204 | (1) |
|
6.7.3 Extraction Algorithms |
|
|
204 | (1) |
|
6.8 Modular Neural Network |
|
|
205 | (10) |
|
|
205 | (1) |
|
6.8.2 Biological Inspiration |
|
|
205 | (1) |
|
|
205 | (1) |
|
6.8.4 Working of the MNNs |
|
|
206 | (1) |
|
|
206 | (1) |
|
6.8.4.2 Hierarchical Network |
|
|
207 | (1) |
|
6.8.4.3 Multiple-Experts Network |
|
|
207 | (1) |
|
6.8.4.4 Ensemble Networks |
|
|
207 | (1) |
|
6.8.4.5 Hierarchical Competitive Modular Neural Network |
|
|
208 | (1) |
|
6.8.4.6 Merge-and-Glue Network |
|
|
208 | (1) |
|
|
209 | (1) |
|
|
210 | (1) |
|
|
211 | (1) |
|
|
211 | (1) |
|
|
212 | (3) |
|
SECTION II Soft Computing in Biosystems |
|
|
|
Chapter 7 Physiological Biometrics |
|
|
215 | (32) |
|
|
215 | (1) |
|
7.1.1 What Is a Biometric System? |
|
|
215 | (1) |
|
7.1.2 Need for Biometric Systems |
|
|
215 | (1) |
|
7.2 Types of Biometric Systems |
|
|
216 | (1) |
|
7.2.1 Physiological Biometric Systems |
|
|
216 | (1) |
|
7.2.2 Behavioral Biometric Systems |
|
|
217 | (1) |
|
7.2.3 Fused Biometric Systems |
|
|
217 | (1) |
|
|
217 | (1) |
|
|
218 | (17) |
|
7.4.1 Dimensionality Reduction with PCA |
|
|
219 | (1) |
|
7.4.1.1 Standard Deviation |
|
|
220 | (1) |
|
|
221 | (1) |
|
7.4.1.3 Covariance Matrix |
|
|
221 | (1) |
|
|
221 | (2) |
|
7.4.2 Dimensionality Reduction by R-LDA |
|
|
223 | (1) |
|
7.4.3 Morphological Methods |
|
|
224 | (5) |
|
7.4.4 Classification with ANNs |
|
|
229 | (1) |
|
|
230 | (1) |
|
|
230 | (1) |
|
|
231 | (1) |
|
7.4.5.1 PCA, R-LDA, and MA with ANN and BPA |
|
|
231 | (2) |
|
7.4.5.2 PCA and R-LDA with RBFN |
|
|
233 | (1) |
|
7.4.6 Concluding Remarks for Face as a Biometric |
|
|
234 | (1) |
|
|
235 | (6) |
|
|
236 | (1) |
|
7.5.2 Image Preprocessing |
|
|
237 | (1) |
|
|
237 | (1) |
|
|
237 | (1) |
|
7.5.2.3 Contour Detection |
|
|
237 | (1) |
|
|
238 | (1) |
|
|
238 | (1) |
|
|
239 | (1) |
|
|
239 | (1) |
|
7.5.4 Classification by ANN |
|
|
239 | (1) |
|
|
239 | (2) |
|
7.5.6 Concluding Remarks for Hand as a Biometric |
|
|
241 | (1) |
|
|
241 | (6) |
|
|
242 | (1) |
|
|
243 | (1) |
|
|
243 | (1) |
|
|
243 | (2) |
|
|
245 | (1) |
|
7.6.6 Concluding Remarks for Iris as a Biometric |
|
|
245 | (2) |
|
Chapter 8 Behavioral Biometrices |
|
|
247 | (28) |
|
|
247 | (1) |
|
|
248 | (21) |
|
|
248 | (2) |
|
|
250 | (1) |
|
8.2.2.1 Cepstral Analysis |
|
|
250 | (1) |
|
8.2.2.2 Power Spectral Density |
|
|
250 | (1) |
|
8.2.2.3 Spectrogram Analysis |
|
|
251 | (1) |
|
8.2.2.4 Number of Zero Crossings |
|
|
252 | (1) |
|
8.2.2.5 Formant Frequencies |
|
|
252 | (1) |
|
|
252 | (1) |
|
8.2.2.7 Pitch and Amplitude |
|
|
252 | (1) |
|
|
252 | (1) |
|
|
252 | (1) |
|
8.2.3.2 Short-Time Fourier Analysis |
|
|
253 | (1) |
|
|
253 | (1) |
|
|
254 | (1) |
|
|
255 | (1) |
|
8.2.6 Modular Neural Network |
|
|
256 | (1) |
|
8.2.7 Systems and Results |
|
|
257 | (1) |
|
|
257 | (3) |
|
8.2.7.2 Neuro-Fuzzy System |
|
|
260 | (3) |
|
8.2.7.3 Modular Neural Networks |
|
|
263 | (1) |
|
8.2.7.4 Wavelet Coefficients with ANN and BPA |
|
|
264 | (4) |
|
8.2.8 Concluding Remarks for the Speech Biometric |
|
|
268 | (1) |
|
8.3 Signature Classification |
|
|
269 | (6) |
|
|
270 | (1) |
|
|
271 | (1) |
|
8.3.3 Artificial Neural Network |
|
|
271 | (1) |
|
|
271 | (2) |
|
8.3.5 Concluding Remarks for the Signature Biometric |
|
|
273 | (2) |
|
Chapter 9 Fusion Methods in Biometrics |
|
|
275 | (16) |
|
|
275 | (3) |
|
9.1.1 Problems with Unimodal Systems |
|
|
275 | (1) |
|
9.1.2 Motivation for Fusion Methods |
|
|
275 | (1) |
|
9.1.3 Workings of Fusion Methods |
|
|
276 | (1) |
|
|
276 | (1) |
|
9.1.5 Unimodal or Bimodal? |
|
|
277 | (1) |
|
9.1.6 Note for Functional Prediction Problems |
|
|
278 | (1) |
|
9.2 Fusion of Face and Speech |
|
|
278 | (3) |
|
|
279 | (1) |
|
|
280 | (1) |
|
9.2.3 Concluding Remarks for the Fusion of Face and Speech |
|
|
280 | (1) |
|
9.3 Fusion of Face and Ear |
|
|
281 | (5) |
|
|
282 | (1) |
|
|
283 | (1) |
|
|
284 | (1) |
|
9.3.2.2 Ear Feature Extraction |
|
|
284 | (1) |
|
|
285 | (1) |
|
|
285 | (1) |
|
9.3.5 Concluding Remarks for the Fusion of Face and Ear |
|
|
286 | (1) |
|
9.4 Recognition with Modular ANN |
|
|
286 | (5) |
|
9.4.1 Problem of High Dimensionality |
|
|
286 | (1) |
|
9.4.2 Modular Neural Networks |
|
|
287 | (1) |
|
|
288 | (1) |
|
9.4.4 Artificial neural Networks |
|
|
288 | (1) |
|
|
289 | (1) |
|
|
289 | (1) |
|
9.4.7 Concluding Remarks for Modular neural network Approach |
|
|
290 | (1) |
|
Chapter 10 Bioinformatics |
|
|
291 | (18) |
|
|
291 | (1) |
|
|
291 | (4) |
|
10.2.1 Four Distinct Aspects of a Protein's Structure |
|
|
293 | (1) |
|
|
293 | (1) |
|
10.2.3 Protein Secondary Structure Theory |
|
|
293 | (1) |
|
10.2.4 Characteristics of Alpha Helices |
|
|
294 | (1) |
|
10.2.5 Characteristics of Beta Sheets |
|
|
294 | (1) |
|
10.2.6 Characteristics of Loops |
|
|
294 | (1) |
|
10.3 Problem of Protein Structure Determination |
|
|
295 | (6) |
|
10.3.1 Application of Artificial Neural Networks |
|
|
296 | (2) |
|
|
298 | (1) |
|
|
298 | (1) |
|
|
299 | (2) |
|
10.3.5 Architecture of the Artificial Neural Network |
|
|
301 | (1) |
|
|
301 | (5) |
|
10.4.1 Data Source and Description |
|
|
302 | (1) |
|
10.4.2 Formation of Inputs and Outputs |
|
|
303 | (1) |
|
|
304 | (1) |
|
|
305 | (1) |
|
|
306 | (1) |
|
|
307 | (2) |
|
Chapter 11 Biomedical Systems-I |
|
|
309 | (38) |
|
|
309 | (3) |
|
|
310 | (1) |
|
11.1.2 Machine Learning Perspective |
|
|
310 | (1) |
|
|
311 | (1) |
|
|
312 | (1) |
|
|
312 | (3) |
|
|
313 | (1) |
|
11.2.2 Radial Basis Function Networks |
|
|
314 | (1) |
|
11.2.3 Learning Vector Quantization |
|
|
314 | (1) |
|
|
315 | (1) |
|
|
315 | (6) |
|
11.3.1 Data Set of Breast Cancer |
|
|
316 | (1) |
|
|
316 | (1) |
|
|
316 | (1) |
|
11.3.2.2 Radial Basis Function Networks (RBFN) |
|
|
317 | (1) |
|
|
318 | (1) |
|
11.3.2.4 Performance Comparison |
|
|
319 | (2) |
|
|
321 | (5) |
|
11.4.1 Data Set for Epilepsy |
|
|
321 | (1) |
|
|
321 | (1) |
|
|
321 | (2) |
|
|
323 | (1) |
|
|
324 | (1) |
|
11.4.2.4 Performance Comparison |
|
|
324 | (2) |
|
|
326 | (5) |
|
11.5.1 Data Set for Thyroid Disorders |
|
|
326 | (1) |
|
|
326 | (1) |
|
|
326 | (2) |
|
|
328 | (1) |
|
|
328 | (1) |
|
11.5.2.4 Performance Comparison |
|
|
329 | (2) |
|
|
331 | (3) |
|
11.6.1 Data set for Skin Diseases |
|
|
331 | (1) |
|
|
331 | (1) |
|
|
331 | (1) |
|
|
332 | (1) |
|
11.6.2.3 Diagnosis Using LVQ Network |
|
|
333 | (1) |
|
11.6.2.4 Performance Comparison |
|
|
333 | (1) |
|
|
334 | (4) |
|
11.7.1 Data Set for Diabetes |
|
|
336 | (1) |
|
|
336 | (1) |
|
|
336 | (1) |
|
|
336 | (1) |
|
|
337 | (1) |
|
11.7.2.4 Performance Comparison |
|
|
338 | (1) |
|
|
338 | (5) |
|
11.8.1 Data Set for Heart Diseases |
|
|
341 | (1) |
|
|
341 | (1) |
|
|
341 | (1) |
|
|
341 | (1) |
|
|
342 | (1) |
|
11.8.2.4 Performance Comparison |
|
|
343 | (1) |
|
|
343 | (1) |
|
|
344 | (3) |
|
Chapter 12 Biomedical Systems-II |
|
|
347 | (28) |
|
|
347 | (1) |
|
12.2 Hybrid Systems as Classifiers |
|
|
348 | (6) |
|
|
349 | (2) |
|
|
351 | (1) |
|
|
352 | (2) |
|
|
354 | (4) |
|
12.3.1 Description of Data Set |
|
|
355 | (1) |
|
|
355 | (1) |
|
|
355 | (1) |
|
|
355 | (1) |
|
|
356 | (1) |
|
12.3.6 Comparison of Results |
|
|
357 | (1) |
|
12.4 Pima Indian Diabetes |
|
|
358 | (4) |
|
12.4.1 Data Set Description |
|
|
358 | (1) |
|
|
359 | (1) |
|
|
359 | (1) |
|
|
359 | (1) |
|
|
360 | (1) |
|
12.4.6 Concluding Remarks for Pima Indian Diabetes |
|
|
361 | (1) |
|
12.5 Fetal Heart Sound De-Noising Techniques |
|
|
362 | (13) |
|
12.5.1 Signal Detection and Recording |
|
|
363 | (1) |
|
|
363 | (1) |
|
12.5.2.1 Band-Pass Filtering Method |
|
|
364 | (1) |
|
12.5.2.2 Signal Difference Method |
|
|
364 | (1) |
|
12.5.2.3 Blind Separation of Source Method |
|
|
364 | (1) |
|
12.5.2.4 Adaptive Noise Cancellation Method |
|
|
364 | (1) |
|
12.5.3 Adaptive Noise Cancellation |
|
|
364 | (2) |
|
|
366 | (1) |
|
|
367 | (3) |
|
12.5.6 Concluding Remarks for Fetal Heart Sound De-Noising Techniques |
|
|
370 | (5) |
|
SECTION III Soft Computing in Other Application Areas |
|
|
|
Chapter 13 Legal Threat Assessment |
|
|
375 | (30) |
|
|
375 | (4) |
|
13.1.1 Threat, Judiciary, and Justice |
|
|
375 | (1) |
|
13.1.2 Role of Time in Threat |
|
|
376 | (1) |
|
|
377 | (1) |
|
|
377 | (1) |
|
|
378 | (1) |
|
13.1.6 Approach and Objectives |
|
|
378 | (1) |
|
|
379 | (11) |
|
13.2.1 Expert System Architecture |
|
|
379 | (1) |
|
13.2.2 Threat Capture System |
|
|
380 | (1) |
|
|
381 | (1) |
|
13.2.3.1 Input Quantization |
|
|
382 | (1) |
|
|
382 | (1) |
|
|
382 | (1) |
|
|
383 | (1) |
|
13.2.4.3 Desperation Rating |
|
|
383 | (1) |
|
13.2.4.4 Financial Capability |
|
|
383 | (1) |
|
13.2.4.5 Social Capability |
|
|
383 | (1) |
|
|
383 | (1) |
|
|
383 | (1) |
|
13.2.5.2 Target Past Exprience |
|
|
383 | (1) |
|
13.2.6 Vulnerability Input |
|
|
383 | (1) |
|
|
384 | (1) |
|
|
384 | (1) |
|
|
384 | (1) |
|
13.2.6.4 Publication Media |
|
|
385 | (1) |
|
13.2.7 Fuzzification of Input |
|
|
385 | (5) |
|
13.3 Fuzzy Inference System |
|
|
390 | (3) |
|
|
390 | (1) |
|
|
391 | (1) |
|
13.3.3 Vulnerability System |
|
|
392 | (1) |
|
13.3.4 Threat Management System |
|
|
392 | (1) |
|
13.4 Analysis of Rules and Inference Engine |
|
|
393 | (5) |
|
|
393 | (2) |
|
|
395 | (1) |
|
13.4.3 Vulnerability System |
|
|
395 | (2) |
|
13.4.4 Threat Management System |
|
|
397 | (1) |
|
13.5 Evaluation of the Expert System |
|
|
398 | (5) |
|
|
398 | (1) |
|
13.5.2 Performance Benchmark |
|
|
398 | (1) |
|
|
399 | (1) |
|
|
399 | (1) |
|
|
399 | (1) |
|
|
399 | (1) |
|
|
399 | (2) |
|
13.5.4 Performance of the Expert System |
|
|
401 | (1) |
|
|
401 | (1) |
|
|
401 | (1) |
|
|
401 | (1) |
|
|
401 | (1) |
|
|
401 | (2) |
|
|
403 | (2) |
|
13.6.1 Implication of the Results |
|
|
403 | (1) |
|
|
403 | (1) |
|
|
403 | (2) |
|
Chapter 14 Robotic Path Planning and Navigation Control |
|
|
405 | (30) |
|
|
405 | (2) |
|
14.2 Robotics and Simulation Model |
|
|
407 | (4) |
|
|
407 | (1) |
|
|
408 | (1) |
|
|
408 | (1) |
|
14.2.4 Path Planning and Control |
|
|
408 | (1) |
|
14.2.5 AI Robotics and Applications |
|
|
409 | (1) |
|
14.2.6 General Assumptions |
|
|
409 | (2) |
|
|
411 | (6) |
|
|
411 | (1) |
|
14.3.2 Evaluations of Fitness |
|
|
412 | (1) |
|
|
413 | (1) |
|
14.3.3.1 Find a Straight Path Solution Between Source and Destination |
|
|
413 | (1) |
|
14.3.3.2 Find Random Left Solution Between Source and Destination |
|
|
414 | (1) |
|
14.3.3.3 Find Random Right Solution Between Source and Destination |
|
|
414 | (1) |
|
14.3.3.4 Find Full Solutions |
|
|
414 | (1) |
|
|
415 | (1) |
|
|
416 | (1) |
|
14.4 Artificial Neural Network with Back Propagation Algorithm |
|
|
417 | (2) |
|
|
417 | (1) |
|
14.4.2 Explanation of the Outputs |
|
|
418 | (1) |
|
14.3.3 Special Constraints Put in the Algorithm |
|
|
418 | (1) |
|
|
418 | (1) |
|
|
419 | (1) |
|
|
420 | (1) |
|
|
421 | (3) |
|
14.7.1 Inputs and Outputs |
|
|
421 | (1) |
|
|
422 | (2) |
|
|
424 | (6) |
|
|
425 | (1) |
|
14.8.2 Artificial Neural Networks |
|
|
425 | (1) |
|
|
425 | (3) |
|
14.8.4 Robotic Controller |
|
|
428 | (2) |
|
|
430 | (5) |
|
Chapter 15 Character Recognition |
|
|
435 | (30) |
|
|
435 | (2) |
|
15.2 General Algorithm Architecture for Character Recognition |
|
|
437 | (5) |
|
|
438 | (1) |
|
|
438 | (1) |
|
|
438 | (1) |
|
|
438 | (1) |
|
15.2.2.3 Skew Detection and Correction |
|
|
439 | (1) |
|
15.2.2.4 Slant Correction |
|
|
439 | (1) |
|
15.2.2.5 Character Normalization |
|
|
439 | (2) |
|
|
441 | (1) |
|
|
441 | (1) |
|
15.3 Multilingual OCR by Rule-Based Approach and ANN |
|
|
442 | (3) |
|
|
445 | (5) |
|
|
445 | (1) |
|
|
446 | (2) |
|
|
448 | (1) |
|
|
448 | (51) |
|
|
499 | (1) |
|
|
449 | (1) |
|
|
449 | (1) |
|
|
449 | (1) |
|
|
449 | (1) |
|
|
449 | (1) |
|
15.5 Artificial Neural Network |
|
|
450 | (1) |
|
|
450 | (1) |
|
|
450 | (1) |
|
|
451 | (1) |
|
15.6 Results of Multilingual OCR |
|
|
451 | (1) |
|
15.7 Algorithm for Handwriting Recognition Using GA |
|
|
451 | (10) |
|
15.7.1 Generation of Graph |
|
|
452 | (1) |
|
15.7.2 Fitness Function of GA |
|
|
453 | (1) |
|
15.7.2.1 Deviation Between Two Edges |
|
|
453 | (3) |
|
15.7.2.2 Deviation of a Graph |
|
|
456 | (1) |
|
|
457 | (1) |
|
15.7.3.1 Matching of Points |
|
|
458 | (1) |
|
15.7.3.2 Generate Adjacency Matrix |
|
|
459 | (1) |
|
|
459 | (1) |
|
15.7.3.4 Removing and Adding Edges |
|
|
460 | (1) |
|
15.7.3.5 Generation of Graph |
|
|
460 | (1) |
|
15.8 Results of Handwriting Recognition |
|
|
461 | (3) |
|
15.8.1 Effect of Genetic Algorithms |
|
|
461 | (1) |
|
15.8.1.1 Distance Optimization |
|
|
461 | (1) |
|
15.8.1.2 Style Optimization |
|
|
462 | (2) |
|
|
464 | (1) |
|
Chapter 16 Picture Learning |
|
|
465 | (22) |
|
|
465 | (1) |
|
|
466 | (4) |
|
|
467 | (2) |
|
|
469 | (1) |
|
16.2.3 Soft-Computing Approaches |
|
|
470 | (1) |
|
16.3 Hybrid Classifier Based on Neuro-Fuzzy System |
|
|
470 | (6) |
|
|
471 | (1) |
|
|
472 | (1) |
|
|
473 | (3) |
|
16.3.4 Genetic Algorithms |
|
|
476 | (1) |
|
16.4 Picture Learning Using the Algorithm |
|
|
476 | (2) |
|
16.5 Instantaneously Learning Neural Network |
|
|
478 | (7) |
|
|
479 | (1) |
|
16.5.1.1 Corners Algorithm |
|
|
480 | (1) |
|
|
480 | (1) |
|
|
481 | (1) |
|
16.5.3 Modifications for Complex Inputs |
|
|
482 | (1) |
|
16.5.4 Restrictions on Inputs |
|
|
483 | (1) |
|
|
484 | (1) |
|
|
485 | (1) |
|
|
485 | (2) |
|
Chapter 17 Other Real Life Applications |
|
|
487 | (20) |
|
|
487 | (1) |
|
17.2 Automatic Document Classification |
|
|
487 | (6) |
|
|
488 | (1) |
|
17.2.1.1 Information Access and Retrieval |
|
|
488 | (1) |
|
17.2.1.2 Document Classification |
|
|
488 | (1) |
|
17.2.1.3 Automatic Document Classification |
|
|
489 | (1) |
|
17.2.2 Architecture of a Classifier |
|
|
489 | (1) |
|
|
489 | (1) |
|
|
490 | (1) |
|
|
490 | (1) |
|
|
490 | (1) |
|
|
490 | (1) |
|
17.2.3.2 Classification Algorithm |
|
|
490 | (1) |
|
17.2.3.3 Implementation Procedure |
|
|
491 | (1) |
|
17.2.4 Artificial Neural Network Model |
|
|
491 | (1) |
|
17.2.4.1 Concept Extraction and Classification |
|
|
492 | (1) |
|
17.2.5 Experiments and Results |
|
|
492 | (1) |
|
17.3 Negative Association Rule Mining |
|
|
493 | (4) |
|
|
494 | (1) |
|
17.3.1.1 Formal Definition of Negative Association Rule |
|
|
495 | (1) |
|
17.3.2 Application of Genetic Algorithms |
|
|
495 | (1) |
|
17.3.2.1 Individual Representation |
|
|
495 | (1) |
|
17.3.2.2 Genetic Operators |
|
|
496 | (1) |
|
17.3.2.3 Fitness Function |
|
|
496 | (1) |
|
17.4 Genre Classification Using Modular Artificial Neural Networks |
|
|
497 | (4) |
|
17.4.1 Genre Identification |
|
|
498 | (1) |
|
17.4.1.1 Feature Extraction |
|
|
499 | (1) |
|
|
499 | (1) |
|
|
499 | (1) |
|
17.4.2 Extracted Features |
|
|
500 | (1) |
|
|
500 | (1) |
|
|
501 | (2) |
|
|
501 | (1) |
|
|
502 | (1) |
|
|
502 | (1) |
|
17.5.2.2 Evolutionary ANN |
|
|
502 | (1) |
|
|
503 | (4) |
|
SECTION IV Soft Computing Implementation Issues |
|
|
|
Chapter 18 Parallel Implementation of Artificial Neural Networks |
|
|
507 | (16) |
|
|
507 | (1) |
|
18.2 Back Propagation Algorithm |
|
|
508 | (1) |
|
18.3 Data Set Partitioning |
|
|
509 | (2) |
|
|
511 | (2) |
|
|
513 | (1) |
|
18.6 Hierarchical Partitioning |
|
|
514 | (5) |
|
18.6.1 Self-Adaptive Approach |
|
|
515 | (2) |
|
|
517 | (1) |
|
|
518 | (1) |
|
|
519 | (3) |
|
|
522 | (1) |
|
Chapter 19 A Guide to Problem Solving Using Soft Computing |
|
|
523 | (48) |
|
|
523 | (2) |
|
|
525 | (21) |
|
19.2.1 Number of Hidden Layers |
|
|
525 | (1) |
|
|
526 | (1) |
|
|
526 | (5) |
|
19.2.4 Variable Learning Rate |
|
|
531 | (1) |
|
|
531 | (3) |
|
19.2.6 Training Time, Epochs, and Overlearning |
|
|
534 | (2) |
|
19.2.7 Validation Data and Early Stopping |
|
|
536 | (1) |
|
|
536 | (1) |
|
19.2.9 Input Distribution |
|
|
536 | (1) |
|
|
537 | (1) |
|
|
537 | (1) |
|
19.2.12 Global and Local Optima |
|
|
538 | (1) |
|
|
539 | (1) |
|
19.2.14 Classificatory Inputs |
|
|
540 | (3) |
|
19.2.15 Not All ANNs Get Trained |
|
|
543 | (1) |
|
19.2.16 ANN with BPA as Classifier |
|
|
544 | (1) |
|
19.2.17 ANN with BPA as Functional Predictor |
|
|
545 | (1) |
|
|
546 | (3) |
|
19.3.1 Radial Basis Function Networks |
|
|
546 | (1) |
|
19.3.1.1 RBFNs as Classifiers |
|
|
546 | (1) |
|
19.3.1.2 RBFNs as Functional Predictors |
|
|
547 | (1) |
|
19.3.1.3 Role of Radius of RBFNs in Generalization |
|
|
547 | (1) |
|
19.3.2 Self-Organizing Maps |
|
|
548 | (1) |
|
19.3.3 Learning Vector Quantization |
|
|
549 | (1) |
|
19.4 Fuzzy Inference Systems |
|
|
549 | (7) |
|
|
550 | (1) |
|
19.4.2 Number of Membership Functions |
|
|
551 | (1) |
|
|
551 | (1) |
|
19.4.4 Input/Output Distribution Between MFs |
|
|
552 | (1) |
|
|
553 | (2) |
|
19.4.6 Manual Modify and Test |
|
|
555 | (1) |
|
|
555 | (1) |
|
19.4.8 Can FIS Solve Every Problem? |
|
|
556 | (1) |
|
19.5 Evolutionary Algorithms |
|
|
556 | (6) |
|
|
557 | (1) |
|
|
557 | (3) |
|
19.5.3 Individual Representation |
|
|
560 | (1) |
|
19.5.4 Infeasible Solutions |
|
|
561 | (1) |
|
19.5.5 Local and Global Minima |
|
|
561 | (1) |
|
|
562 | (1) |
|
|
562 | (9) |
|
|
563 | (1) |
|
|
564 | (1) |
|
|
565 | (6) |
|
|
|
Appendix A Matlab® GUIs for Soft Computing |
|
|
571 | (14) |
|
|
571 | (1) |
|
A.2 Artificial Neural Networks |
|
|
571 | (7) |
|
A.3 Fuzzy Inference System |
|
|
578 | (3) |
|
|
581 | (2) |
|
A.5 Adaptive Neuro-Fuzzy Inference Systems |
|
|
583 | (2) |
|
Appendix B Matlab® Source Codes for Soft Computing |
|
|
585 | (8) |
|
|
585 | (1) |
|
B.2 Artificial Neural Network |
|
|
585 | (1) |
|
|
586 | (1) |
|
B.2.2 Radial Basis Function Network |
|
|
587 | (1) |
|
B.2.3 Learning Vector Quantization |
|
|
587 | (1) |
|
B.2.4 Self-Organizing Map |
|
|
587 | (1) |
|
B.2.5 Recurrent Neural Network |
|
|
588 | (3) |
|
B.3 Fuzzy Inference Systems |
|
|
591 | (1) |
|
|
591 | (2) |
|
|
593 | (4) |
|
|
References |
|
597 | (44) |
Standard Data Sets Used |
|
641 | (2) |
Registered Trademarks |
|
643 | (2) |
Index |
|
645 | |