Atnaujinkite slapukų nuostatas

Sentic Computing: A Common-Sense-Based Framework for Concept-Level Sentiment Analysis Softcover Reprint of the Original 1st 2015 ed. [Minkštas viršelis]

  • Formatas: Paperback / softback, 176 pages, aukštis x plotis: 235x155 mm, weight: 454 g, 40 Illustrations, color; 14 Illustrations, black and white; XXII, 176 p. 54 illus., 40 illus. in color., 1 Paperback / softback
  • Serija: Socio-Affective Computing 1
  • Išleidimo metai: 21-Mar-2019
  • Leidėjas: Springer International Publishing AG
  • ISBN-10: 3319795163
  • ISBN-13: 9783319795164
Kitos knygos pagal šią temą:
  • Formatas: Paperback / softback, 176 pages, aukštis x plotis: 235x155 mm, weight: 454 g, 40 Illustrations, color; 14 Illustrations, black and white; XXII, 176 p. 54 illus., 40 illus. in color., 1 Paperback / softback
  • Serija: Socio-Affective Computing 1
  • Išleidimo metai: 21-Mar-2019
  • Leidėjas: Springer International Publishing AG
  • ISBN-10: 3319795163
  • ISBN-13: 9783319795164
Kitos knygos pagal šią temą:
This volume presents a knowledge-based approach to concept-level sentiment analysis at the crossroads between affective computing, information extraction, and common-sense computing, which exploits both computer and social sciences to better interpret and process information on the Web.
Concept-level sentiment analysis goes beyond a mere word-level analysis of text in order to enable a more efficient passage from (unstructured) textual information to (structured) machine-processable data, in potentially any domain.

Readers will discover the following key novelties, that make this approach so unique and avant-garde, being reviewed and discussed:
• Sentic Computing's multi-disciplinary approach to sentiment analysis-evidenced by the concomitant use of AI, linguistics and psychology for knowledge representation and inference
• Sentic Computing’s shift from syntax to semantics-enabled by the adoption of the bag-of-concepts model instead of simply counting word co-occurrence frequencies in text
• Sentic Computing's shift from statistics to linguistics-implemented by allowing sentiments to flow from concept to concept based on the dependency relation between clauses

This volume is the first in the Series Socio-Affective Computing edited by Dr Amir Hussain and Dr Erik Cambria and will be of interest to researchers in the fields of socially intelligent, affective and multimodal human-machine interaction and systems.
Introduction.- SenticNet.- Sentic Patterns.- Sentic Applications.- Conclusion.- Index.