Atnaujinkite slapukų nuostatas

El. knyga: Transient Analysis of Power Systems - A Practical Approach: A Practical Approach [Wiley Online]

Edited by (Universitat Politecnica de Catalunya)
  • Formatas: 624 pages
  • Serija: IEEE Press
  • Išleidimo metai: 13-Feb-2020
  • Leidėjas: Wiley-IEEE Press
  • ISBN-10: 111948054X
  • ISBN-13: 9781119480549
Kitos knygos pagal šią temą:
  • Wiley Online
  • Kaina: 152,20 €*
  • * this price gives unlimited concurrent access for unlimited time
  • Formatas: 624 pages
  • Serija: IEEE Press
  • Išleidimo metai: 13-Feb-2020
  • Leidėjas: Wiley-IEEE Press
  • ISBN-10: 111948054X
  • ISBN-13: 9781119480549
Kitos knygos pagal šią temą:

A hands-on introduction to advanced applications of power system transients with practical examples

Transient Analysis of Power Systems: A Practical Approach offers an authoritative guide to the traditional capabilities and the new software and hardware approaches that can be used to carry out transient studies and make possible new and more complex research. The book explores a wide range of topics from an introduction to the subject to a review of the many advanced applications, involving the creation of custom-made models and tools and the application of multicore environments for advanced studies.

The authors cover the general aspects of the transient analysis such as modelling guidelines, solution techniques and capabilities of a transient tool. The book also explores the usual application of a transient tool including over-voltages, power quality studies and simulation of power electronics devices. In addition, it contains an introduction to the transient analysis using the ATP. All the studies are supported by practical examples and simulation results. This important book:

  • Summarises modelling guidelines and solution techniques used in transient analysis of power systems
  • Provides a collection of practical examples with a detailed introduction and a discussion of results
  • Includes a collection of case studies that illustrate how a simulation tool can be used for building environments that can be applied to both analysis and design of power systems
  • Offers guidelines for building custom-made models and libraries of modules, supported by some practical examples
  • Facilitates application of a transients tool to fields hardly covered with other time-domain simulation tools
  • Includes a companion website with data (input) files of examples presented, case studies and power point presentations used to support cases studies

Written for EMTP users, electrical engineers, Transient Analysis of Power Systems is a hands-on and practical guide to advanced applications of power system transients that includes a range of practical examples. 

About the Editor xv
List of Contributors
xvii
Preface xix
About the Companion Website xxi
1 Introduction to Transients Analysis of Power Systems with ATP
1(10)
Juan A. Martinez-Velasco
1.1 Overview
1(2)
1.2 The ATP Package
3(2)
1.3 ATP Documentation
5(1)
1.4 Scope of the Book
6(5)
References
8(3)
2 Modelling of Power Components for Transients Studies
11(64)
Juan A. Martinez-Velasco
2.1 Introduction
11(1)
2.2 Overhead Lines
12(11)
2.2.1 Overview
12(1)
2.2.2 Multi-conductor Transmission Line Equations and Models
13(1)
22.2.1 Transmission Line Equations
13(2)
2.2.2.2 Corona Effect
15(1)
2.2.2.3 Line Constants Routine
15(1)
2.2.3 Transmission Line Towers
16(1)
2.2.4 Transmission Line Grounding
17(1)
2.2.4.1 Introduction
17(1)
2.2.4.2 Low-Frequency Models
17(1)
2.2.4.3 High-Frequency Models
18(2)
2.2.4.4 Treatment of Soil Ionization
20(1)
2.2.5 Transmission Line Insulation
21(1)
2.2.5.1 Voltage-Time Curves
21(1)
2.2.5.2 Integration Methods
22(1)
2.2.5.3 Physical Models
22(1)
2.3 Insulated Cables
23(5)
2.3.1 Overview
23(1)
2.3.2 Insulated Cable Designs
24(1)
2.3.3 Bonding Techniques
25(1)
2.3.4 Material Properties
26(1)
2.3.5 Discussion
27(1)
2.3.6 Cable Constants/Parameters Routines
27(1)
2.4 Transformers
28(17)
2.4.1 Overview
28(3)
2.4.2 Transformer Low-Frequency Transients
31(1)
2.4.2.1 Introduction to Low-Frequency Models
31(1)
2.4.2.2 Single-Phase Transformer Models
32(4)
2.4.2.3 Three-Phase Transformer Models
36(1)
2.4.3 Transformer Modelling for High-Frequency Models
37(1)
2.4.3.1 Introduction to High-Frequency Models
37(2)
2.4.3.2 Models for Internal Voltage Calculation
39(2)
2.4.3.3 Terminal Models
41(4)
2.5 Rotating Machines
45(13)
2.5.1 Overview
46(1)
2.5.2 Rotating Machines Models for Low-Frequency Transients
46(1)
2.5.2.1 Introduction
46(1)
2.5.2.2 Modelling of Induction Machines
46(5)
2.5.2.3 Modelling of Synchronous Machines
51(4)
2.5.3 High-Frequency Models for Rotating Machine Windings
55(1)
2.5.3.1 Introduction
55(1)
2.5.3.2 Internal Models
56(2)
2.5.3.3 Terminal Models
58(1)
2.6 Circuit Breakers
58(17)
2.6.1 Overview
58(1)
2.6.2 Circuit Breaker Models for Opening Operations
59(1)
2.6.2.1 Current Interruption
59(1)
2.6.2.2 Circuit Breaker Models
60(1)
2.6.2.3 Gas-Pitted Circuit Breaker Models
61(1)
2.6.2.4 Vacuum Circuit Breaker Models
62(2)
2.6.3 Circuit Breaker Models for Closing Operations
64(1)
2.6.3.1 Introduction
64(1)
2.6.3.2 Statistical Switches
65(1)
2.6.3.3 Prestrike Models
66(1)
Acknowledgement
66(1)
References
66(9)
3 Solution Techniques for Electromagnetic Transient Analysis
75(1)
Juan A. Martinez-Velasco
31 Introduction
75(32)
3.2 Modelling of Power System Components for Transient Analysis
76(2)
3.3 Solution Techniques for Electromagnetic Transients Analysis
78(18)
3.3.1 Introduction
78(1)
3.3.2 Solution Techniques for Linear Networks
78(1)
3.3.2.1 The Trapezoidal Rule
78(1)
3.3.2.2 Companion Circuits of Basic Circuit Elements
79(6)
3.3.2.3 Computation of Transients in Linear Networks
85(1)
3.3.2.4 Example: Transient Solution of a Linear Network
86(1)
3.3.3 Networks with Nonlinear Elements
87(1)
3.3.3.1 Introduction
87(1)
3.3.3.2 Compensation Methods
87(2)
3.3.3.3 Piecewise Linear Representation
89(1)
3.3.4 Solution Methods for Networks with Switches
90(1)
3.3.5 Numerical Oscillations
91(5)
3.4 Transient Analysis of Control Systems
96(1)
3.5 Initialization
97(3)
3.5.1 Introduction
97(1)
3.5.2 Initialization of the Power Network
97(1)
3.5.2.1 Options for Steady-State Solution Without Harmonics
97(1)
3.5.2.2 Steady-State Solution
98(1)
3.5.3 Load Flow Solution
99(1)
3.5.4 Initialization of Control Systems
100(1)
3.6 Discussion
100(7)
3.6.1 Solution Techniques Implemented in ATP
101(1)
3.6.2 Other Solution Techniques
101(1)
3.6.2.1 Transient Solution of Networks
101(1)
3.6.2.2 Transient Analysis of Control Systems
102(1)
3.6.2.3 Steady-State Initialization
102(1)
Acknowledgement
103(1)
References
103(3)
To Probe Further
106(1)
4 The ATP Package: Capabilities and Applications
107(1)
Juan A. Martinez-Velasco
Jacinto Martin-Arnedo
4.1 Introduction
107(1)
4.2 Capabilities of the ATP Package
108(1)
4.2.1 Overview
108(1)
4.2.2 The Simulation Module -- TPBIG
109(1)
4.2.2.1 Overview
109(1)
4.2.2.2 Modelling Capabilities
110(7)
4.2.2.3 Solution Techniques
117(3)
4.2.3 The Graphical User Interface -- ATP Draw
120(1)
4.2.3.1 Overview
120(1)
4.2.3.2 Main Functionalities
120(3)
4.2.3.3 Supporting Modules for Power System Components
123(2)
4.2.4 The Postprocessor -- TOP
125(1)
4.2.4.1 Data Management
125(1)
4.2.4.2 Data Display
126(1)
4.2.4.3 Data Processing
127(1)
4.2.4.4 Data Formatting
127(1)
4.2.4.5 Graphical Output
127(1)
4.3 Applications
128(1)
4.4 Illustrative Case Studies
129(7)
4.4.1 Introduction
129(1)
4.4.2 Case Study 1: Optimum Allocation of Capacitor Banks
130(2)
4.4.3 Case Study 2: Parallel Resonance Between Transmission Lines
132(1)
4.4.4 Case Study 3: Selection of Surge Arresters
133(3)
4.5 Remarks
136(3)
References
136(2)
To Probe Further
138(1)
5 Introduction to the Simulation of Electromagnetic Transients Using ATP
139(3)
Juan A. Martinez-Velasco
Francisco Gonzalez-Molin
5.1 Introduction
139(1)
5.2 Input Data File Using ATP Formats
140(2)
53 Some Important Issues
142(61)
5.3.1 Before Simulating the Test Case
142(1)
5.3.1.1 Setting Up a System Model
142(1)
5.3.1.2 Topology Requirements
142(1)
5.3.1.3 Selection of the Time-Step Size and the Simulation Time
143(1)
5.3.1.4 Units
143(1)
5.3.1.5 Output Selection
144(1)
5.3.2 After Simulating the Test Case
144(1)
5.3.2.1 Verifying the Results
144(1)
5.3.2.2 Debugging Suggestions
144(1)
5.4 Introductory Cases. Linear Circuits
145(10)
5.4.1 The Series and Parallel RLC Circuits
145(1)
5.4.2 The Series RLC Circuit: De-energization Transient
145(1)
5.4.2.1 Theoretical Analysis
145(2)
5.4.2.2 ATP Implementation
147(1)
5.4.2.3 Simulation Results
148(2)
5.4.3 The Parallel RLC Circuit: De-energization Transient
150(1)
5.4.3.1 Theoretical Analysis
150(2)
5.4.3.2 ATP Implementation
152(1)
5.4.3.3 Simulation Results
153(2)
5.5 Switching of Capacitive Currents
155(13)
5.5.1 Introduction
155(1)
5.5.2 Switching Transients in Simple Capacitive Circuits -- DC Supply
155(1)
5.5.2.1 Energization of a Capacitor Bank
155(2)
5.5.2.2 Energization of a Back-to-Back Capacitor Bank
157(2)
5.5.3 Switching Transients in Simple Capacitive Circuits -- AC Supply
159(1)
5.5.3.1 Energization of a Capacitor Bank
159(1)
5.5.3.2 Energization of a Back-to-Back Capacitor Bank
160(2)
5.5.3.3 Reclosing into Trapped Charge
162(2)
5.5.4 Discharge of a Capacitor Bank
164(4)
5.6 Switching of Inductive Currents
168(19)
5.6.1 Introduction
168(1)
5.6.2 Switching of Inductive Currents in Linear Circuits
168(1)
5.6.2.1 Interruption of Inductive Currents
168(2)
5.6.2.2 Voltage Escalation During the Interription of Inductive Currents
170(2)
5.6.2.3 Current Chopping
172(3)
5.6.2.4 Making of Inductive Currents
175(1)
5.6.3 Switching of Inductive Currents in Nonlinear Circuits
176(2)
5.6.4 Transients in Nonlinear Reactances
178(2)
5.6.4.1 Interruption of an Inductive Current
180(1)
5.6.4.2 Energization of a Nonlinear Reactance
181(3)
5.6.5 Ferroresonance
184(3)
5.7 Transient Analysis of Circuits with Distributed-Parameters
187(16)
5.7.1 Introduction
187(1)
5.7.2 Transients in Linear Circuits with Distributed-Parameters Components
187(1)
5.7.2.1 Energization of Lines and Cables
187(4)
5.7.2.2 Transient Recovery Voltage During Fault Clearing
191(4)
5.7.3 Transients in Nonlinear Circuits with Distributed-Parameter Components
195(1)
5.7.3.1 Surge Arrester Protection
195(1)
5.7.3.2 Protection Against Lightning Overvoltages Using Surge Arresters
196(5)
References
201(1)
Acknowledgement
202(1)
To Probe Further
202(1)
6 Calculation of Power System Overvoltages
203(72)
Juan A. Martinez-Velasco
Ferley Castro-Aranda
6.1 Introduction
203(1)
6.2 Power System Overvoltages: Causes and Characterization
204(2)
6.3 Modelling for Simulation of Power System Overvoltages
206(10)
6.3.1 Introduction
206(1)
6.3.2 Modelling Guidelines for Temporary Overvoltages
207(1)
6.3.3 Modelling Guidelines for Slow-Front Overvoltages
208(1)
6.3.3.1 Lines and Cables
208(1)
6.3.3.2 Transformers
208(1)
6.3.3.3 Switchgear
208(1)
6.3.3.4 Capacitors and Reactors
209(1)
6.3.3.5 Surge Arresters
209(1)
6.3.3.6 Loads
210(1)
6.3.3.7 Power Supply
210(1)
6.3.4 Modelling Guidelines for Fast-Front Overvoltages
210(1)
6.3.4.1 Overhead Transmission Lines
210(2)
6.3.4.2 Substations
212(1)
6.3.4.3 Surge Arresters
213(1)
6.3.4.4 Sources
214(1)
6.3.5 Modelling Guidelines for Very Fast-Front Overvoltages in Gas Insulated Substations
214(2)
6.4 ATP Capabilities for Power System Overvoltage Studies
216(1)
6.5 Case Studies
216(59)
6.5.1 Introduction
216(1)
6.5.2 Low Frequency Overvoltages
216(1)
6.5.2.1 Case Study 1: Resonance Between Parallel Lines
217(2)
6.5.2.2 Case Study 2: Ferroresonance in a Distribution System
219(6)
6.5.3 Slow-Front Overvoltages
225(2)
6.5.3.1 Case Study 3: Transmission Line Energization
227(11)
6.5.3.2 Case Study 4: Capacitor Bank Switching
238(5)
6.5.4 Fast-Front Overvoltages
243(1)
6.5.4.1 Case Study 5: Lightning Performance of an Overhead Transmission Line
244(17)
6.5.5 Very Fast-Front Overvoltages
261(1)
6.5.5.1 Case Study 6: Origin of Very Fast-Front Transients in GIS
262(1)
6.5.5.2 Case Study 7: Propagation of Very Fast-Front Transients in GIS
263(4)
6.5.5.3 Case Study 8: Very Fast-Front Transients in a 765 kV GIS
267(3)
References
270(4)
To Probe Further
274(1)
7 Simulation of Rotating Machine Dynamics
275(58)
Juan A. Martinez-Velasco
7.1 Introduction
275(1)
7.2 Representation of Rotating Machines in Transients Studies
275(1)
7.3 ATP Rotating Machines Models
276(2)
7.3.1 Background
276(1)
7.3.2 Built-in Rotating Machine Models
276(2)
7.3.3 Rotating Machine Models for Fast Transients Simulation
278(1)
7.4 Solution Methods
278(6)
7.4.1 Introduction
278(1)
7.4.2 Three-Phase Synchronous Machine Model
278(3)
7.4.3 Universal Machine Module
281(3)
7.4.4 WindSyn-Based Models
284(1)
7.5 Procedure to Edit Machine Data Input
284(1)
7.6 Capabilities of Rotating Machine Models
285(2)
7.7 Case Studies: Three-Phase Synchronous Machine
287(22)
7.7.1 Overview
287(1)
7.7.2 Case Study 1: Stand-Alone Three-Phase Synchronous Generator
288(1)
7.7.3 Case Study 2: Load Rejection
288(10)
7.7.4 Case Study 3: Transient Stability
298(4)
7.7.5 Case Study 4: Subsynchronous Resonance
302(7)
7.8 Case Studies: Three-Phase Induction Machine
309(24)
7.8.1 Overview
309(1)
7.8.2 Case Study 5: Induction Machine Test
310(3)
7.8.3 Case Study 6: Transient Response of the Induction Machine
313(1)
7.8.3.1 First Case
314(1)
7.8.3.2 Second Case
314(4)
7.8.3.3 Third Case
318(5)
7.8.4 Case Study 7: SCIM-Based Wind Power Generation
323(5)
References
328(3)
To Probe Further
331(2)
8 Power Electronics Applications
333(72)
Juan A. Martinez-Velasco
Jacinto Martin-Arnedo
8.1 Introduction
333(1)
8.2 Converter Models
334(1)
8.2.1 Switching Models
334(1)
8.2.2 Dynamic Average Models
334(1)
8.3 Power Semiconductor Models
335(2)
8.3.1 Introduction
335(1)
8.3.2 Ideal Device Models
335(1)
8.3.3 More Detailed Device Models
335(1)
8.3.4 Approximate Models
336(1)
8.4 Solution Methods for Power Electronics Studies
337(1)
8.4.1 Introduction
337(1)
8.4.2 Time-Domain Transient Solution
337(1)
8.4.3 Initialization
338(1)
8.5 ATP Simulation of Power Electronics Systems
338(7)
8.5.1 Introduction
338(1)
8.5.2 Switching Devices
339(1)
8.5.2.1 Built-in Semiconductor Models
339(1)
8.5.2.2 Custom-made Semiconductor Models
340(2)
8.5.3 Power Electronics Systems
342(1)
8.5.4 Power Systems
343(1)
8.5.5 Control Systems
343(1)
8.5.6 Rotating Machines
344(1)
8.5.6.1 Built-in Rotating Machine Models
344(1)
8.5.6.2 Custom-made Rotating Machine Models
344(1)
8.5.7 Simulation Errors
345(1)
8.6 Power Electronics Applications in Transmission, Distribution, Generation and Storage Systems
345(4)
8.6.1 Overview
345(1)
8.6.2 Transmission Systems
346(1)
8.6.3 Distribution Systems
346(1)
8.6.4 DER Systems
347(2)
8.7 Introduction to the Simulation of Power Electronics Systems
349(1)
87.1 Overview
349(18)
8.7.2 One-Switch Case Studies
350(1)
8.7.3 Two-Switches Case Studies
351(4)
8.7.4 Application of the GIFU Request
355(6)
8.7.5 Simulation of Power Electronics Converters
361(1)
8.7.5.1 Single-phase Inverter
361(1)
8.7.5.2 Three-phase Line-Commutated Diode Bridge Rectifier
362(3)
8.7.6 Discussion
365(2)
8.8 Case Studies
367(38)
8.8.1 Introduction
367(1)
8.8.2 Case Study 1: Three-phase Controlled Rectifier
367(2)
8.8.3 Case Study 2: Three-phase Adjustable Speed AC Drive
369(4)
8.8.4 Case Study 3: Digitally-controlled Static VAR Compensator
373(2)
8.8.4.1 Test System
375(1)
8.8.4.2 Control Strategy
375(7)
8.8.5 Case Study 4: Unified Power Flow Controller
382(1)
8.8.5.1 Configuration
382(1)
8.8.5.2 Control
382(2)
8.8.5.3 Modelling
384(1)
8.8.5.4 ATP Draw Implementation
385(1)
8.8.5.5 Simulation Results
385(1)
8.8.6 Case Study 5: Solid State Transformer
386(1)
8.8.6.1 Introduction
386(2)
8.8.6.2 SST Configuration
388(1)
8.8.6.3 Control Strategies
388(5)
8.8.6.4 Test System and Modelling Guidelines
393(3)
8.8.6.5 Case Studies
396(3)
Acknowledgement
399(1)
References
399(5)
To Probe Further
404(1)
9 Creation of Libraries
405(14)
Juan A. Martinez Velasco
Jacinto Martin-Arnedo
9.1 Introduction
405(1)
9.2 Creation of Custom-Made Modules
406(13)
9.2.1 Introduction
406(1)
9.2.2 Application of DATA BASE MODULE
406(5)
9.2.3 Application of MODELS
411(6)
9.2.4 The Group Option
417(2)
93 Application of the ATP to Power Quality Studies
419(52)
9.3.1 Introduction
419(1)
9.3.2 Power Quality Issues
419(3)
9.3.3 Simulation of Power Quality Problems
422(1)
9.3.4 Power Quality Studies
423(3)
9.4 Custom-Made Modules for Power Quality Studies
426(1)
9.5 Case Studies
426(45)
9.5.1 Overview
426(1)
9.5.2 Harmonics Analysis
426(2)
9.5.2.1 Case Study 1: Generation of Harmonic Waveforms
428(3)
9.5.2.2 Case Study 2: Harmonic Resonance
431(3)
9.5.2.3 Case Study 3: Harmonic Frequency Scan
434(7)
9.5.2.4 Case Study 4: Compensation of Harmonic Currents
441(6)
9.5.3 Voltage Dip Studies in Distribution Systems
447(1)
9.5.3.1 Overview
447(2)
9.5.3.2 Case Study 5: Voltage Dip Measurement
449(5)
9.5.3.3 Case Study 6: Voltage Dip Characterization
454(8)
9.5.3.4 Case Study 7: Voltage Dip Mitigation
462(4)
References
466(4)
To Probe Further
470(1)
10 Protection Systems
471(68)
Juan A. Martinez-Velasco
Jacinto Martin-Arnedo
10.1 Introduction
471(1)
10.2 Modelling Guidelines for Protection Studies
472(4)
10.2.1 Line and Cable Models
472(1)
10.2.1.1 Models for Steady-State Studies
473(1)
10.2.1.2 Models for Transient Studies
473(1)
10.2.2 Transformer Models
473(1)
10.2.2.1 Low-frequency Transformer Models
474(1)
10.2.2.2 High-frequency Transformer Models
475(1)
10.2.3 Source Models
475(1)
10.2.4 Circuit Breaker Models
475(1)
10.3 Models of Instrument Transformers
476(8)
10.3.1 Introduction
476(1)
10.3.2 Current Transformers
476(2)
10.3.3 Coupling Capacitor Voltage Transformers
478(1)
10.3.4 Voltage Transformers
479(1)
10.3.5 Case Studies
480(1)
10.3.5.1 Case Study 1: Current Transformer Test
480(2)
10.3.5.2 Case Study 2: Coupling Capacitor Voltage Transformer Test
482(2)
10.3.6 Discussion
484(1)
10.4 Relay Modelling
484(24)
10.4.1 Introduction
484(1)
10.4.2 Classification of Relay Models
485(1)
10.4.3 Implementation of Relay Models
486(2)
10.4.4 Applications of Relay Models
488(1)
10.4.5 Testing and Validation of Relay Models
488(2)
10.4.6 Accuracy and Limitations of Relay Models
490(1)
10.4.7 Case Studies
490(1)
10.4.7.1 Overview
490(1)
10.4.7.2 Case Study 3: Simulation of an Electromechanical Distance Relay
491(6)
10.4.7.3 Case Study 4: Simulation of a Numerical Distance Relay
497(11)
10.5 Protection of Distribution Systems
508(29)
10.5.1 Introduction
508(1)
10.5.2 Protection of Distribution Systems with Distributed Generation
508(1)
10.5.2.1 Distribution Feeder Protection
508(1)
10.5.2.2 Interconnection Protection
508(1)
10.5.3 Modelling of Distribution Feeder Protective Devices
509(1)
10.5.3.1 Circuit Breakers -- Overcurrent Relays
509(2)
10.5.3.2 Reclosers
511(1)
10.5.3.3 Fuses
511(1)
10.5.3.4 Sectionalizers
512(1)
10.5.4 Protection of the Interconnection of Distributed Generators
513(1)
10.5.5 Case Studies
514(1)
10.5.5.1 Case Study 5: Testing the Models
514(1)
10.5.5.2 Case Study 6: Coordination Between Protective Devices
524(1)
10.5.5.3 Case Study 7: Protection of Distributed Generation
525(6)
10.6 Discussion
531(2)
Acknowledgement
533(1)
References
533(4)
To Probe Further
537(2)
11 ATP Applications Using a Parallel Computing Environment
539(1)
Javier A. Corea-Araujo
Gerardo Guerra
Juan A. Martinez-Velasco
11.1 Introduction
539(1)
11.2 Bifurcation Diagrams for Ferroresonance Characterization
540(1)
11.2.1 Introduction
540(1)
11.2.2 Characterization of Ferroresonance
540(1)
11.2.3 Modelling Guidelines for Ferroresonance Analysis
541(1)
11.2.4 Generation of Bifurcation Diagrams
541(1)
11.2.5 Parametric Analysis Using a Multicore Environment
542(2)
11.2.6 Case Studies
544(1)
11.2.6.1 Case 1: An Illustrative Example
544(1)
11.2.6.2 Case 2: Ferroresonant Behaviour of a Voltage Transformer
545(1)
11.2.6.3 Case 3: Ferroresonance in a Five-Legged Core Transformer
545(5)
11.2.7 Discussion
550(1)
11.3 Lightning Performance Analysis of Transmission Lines
550(1)
11.3.1 Introduction
550(1)
11.3.2 Lightning Stroke Characterization
551(1)
11.3.3 Modelling for Lightning Overvoltage Calculations
552(2)
11.3.4 Implementation of the Monte Carlo Procedure Using Parallel Computing
554(1)
11.3.5 Illustrative Example
555(1)
11.3.5.1 Test Line
555(1)
11.3.5.2 Line and Lightning Stroke Parameters
555(4)
11.3.5.3 Simulation Results
559(3)
11.3.6 Discussion
562(1)
11.4 Optimum Design of a Hybrid HVDC Circuit Breaker
563(1)
11.4.1 Introduction
563(1)
11.4.2 Design and Operation of the Hybrid HVDC Circuit Breaker
563(2)
11.4.3 ATP Implementation of the Hybrid HVDC Circuit Breaker
565(1)
11.4.4 Test System
566(1)
11.4.5 Transient Response of the Hybrid Circuit Breaker
567(1)
11.4.6 Implementation of a Parallel Genetic Algorithm
568(2)
11.4.7 Simulation Results
570(4)
11.4.8 Discussion
574(1)
Acknowledgement
575(1)
References
575(4)
A Characteristics of the Multicore Installation
579(1)
B Test System Parameters for Ferroresonance Studies
579(2)
To Probe Further
580(1)
Index 581
JUAN A. MARTINEZ-VELASCO, PHD, is retired from his position with the Department of Electrical Engineering, Polytechnic University of Catalonia, Barcelona, Spain. He has been involved in several EMTP courses and worked as a consultant for a number of Spanish companies. His teaching and research areas cover Power Systems Analysis, Transmission and Distribution, Power Quality, and Electromagnetic Transients.