Atnaujinkite slapukų nuostatas

5G Networks: Fundamental Requirements, Enabling Technologies, and Operations Management [Kietas viršelis]

Edited by , Edited by , Edited by
  • Formatas: Hardback, 784 pages, aukštis x plotis x storis: 230x152x40 mm, weight: 1361 g
  • Išleidimo metai: 04-Dec-2018
  • Leidėjas: Wiley-IEEE Press
  • ISBN-10: 1119332737
  • ISBN-13: 9781119332732
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 784 pages, aukštis x plotis x storis: 230x152x40 mm, weight: 1361 g
  • Išleidimo metai: 04-Dec-2018
  • Leidėjas: Wiley-IEEE Press
  • ISBN-10: 1119332737
  • ISBN-13: 9781119332732
Kitos knygos pagal šią temą:

A reliable and focused treatment of the emergent technology of fifth generation (5G) networks

This book provides an understanding of the most recent developments in 5G, from both theoretical and industrial perspectives. It identifies and discusses technical challenges and recent results related to improving capacity and spectral efficiency on the radio interface side, and operations management on the core network side. It covers both existing network technologies and those currently in development in three major areas of 5G: spectrum extension, spatial spectrum utilization, and core network and network topology management. It explores new spectrum opportunities; the capability of radio access technology; and the operation of network infrastructure and heterogeneous QoE provisioning.

5G Networks: Fundamental Requirements, Enabling Technologies, and Operations Management is split into five sections: Physical Layer for 5G Radio Interface Technologies; Radio Access Technology for 5G Networks; 5G Network Interworking and Core Network Advancements; Vertical 5G Applications; and R&D and 5G Standardization. It starts by introducing emerging technologies in 5G software, hardware, and management aspects before moving on to cover waveform design for 5G and beyond; code design for multi-user MIMO; network slicing for 5G networks; machine type communication in the 5G era; provisioning unlicensed LAA interface for smart grid applications; moving toward all-IT 5G end-to-end infrastructure; and more. This valuable resource:

  • Provides a comprehensive reference for all layers of 5G networks
  • Focuses on fundamental issues in an easy language that is understandable by a wide audience
  • Includes both beginner and advanced examples at the end of each section
  • Features sections on major open research challenges

5G Networks: Fundamental Requirements, Enabling Technologies, and Operations Management is an excellent book for graduate students, academic researchers, and industry professionals, involved in 5G technology.

Foreword xxi
Preface xxv
Author Bios xxvii
List of Contributors xxxi
List of Abbreviations xxxvii
Introduction 1(12)
Part I: Physical Layer for 5G Radio Interface Technologies 13(286)
1 Emerging Technologies in Software, Hardware, and Management Aspects Toward the 5G Era: Trends and Challenges
15(36)
Ioannis-Prodromos Belikaidis
Andreas Georgakopoulos
Evangelos Kosmatos
Stavroula Vassaki
Orestis-Andreas Liakopoulos
Vassilis Foteinos
Panagiotis Vlacheas
Panagiotis Demestichas
1.1 Introduction
15(2)
1.2 5G Requirements and Technology Trends
17(3)
1.3 Status and Challenges in Hardware and Software Development
20(18)
1.3.1 Problem Statement
21(1)
1.3.2 Solution
22(1)
1.3.2.1 Functions Definition (LTE, 3GPP-Based PHY Functions)
22(1)
1.3.2.2 Parameters (KPIs)/ Constraints Definition
23(1)
1.3.2.3 Functional Graph (Dataflow Graph) Provision
24(1)
1.3.3 Optimization Problem Formulation
25(1)
1.3.4 Evolutionary Multiobjective Algorithmic Solution
26(1)
1.3.5 Testbed Setup
26(2)
1.3.6 Preliminary Test Results
28(1)
1.3.7 Status and Challenges in 5G Wireless Communications
29(1)
1.3.7.1 Novel Physical Layer Aspects
29(1)
1.3.7.2 Novel Frame Design Based on Service Requirements
30(1)
1.3.7.3 Support of Different Numerologies
32(2)
1.3.8 Enhanced Radio Resource Management (RRM) and MAC Adaptation for 5G
34(4)
1.4 5G Network Management Aspects Enhanced with Machine Learning
38(7)
1.4.1 Machine Learning for Service Classification in 5G Networks
38(1)
1.4.2 State-of-the-Art Machine Learning Mechanisms for Traffic Classification
39(1)
1.4.3 Classification Approach and Evaluation Metrics
40(3)
1.4.4 Evaluation Performance of Classification Mechanisms
43(2)
1.5 Conclusion
45(1)
References
45(6)
2 Waveform Design for 5G and Beyond
51(26)
Ali Fatih Demir
Mohamed Elkourdi
Mostafa Ibrahim
Huseyin Arslan
2.1 Introduction
51(1)
2.2 Fundamentals of the 5G Waveform Design
52(6)
2.2.1 Waveform Definition
52(1)
2.2.2 5G Use Cases and Waveform Design Requirements
53(1)
2.2.3 The Baseline for 5G Waveform Discussion: CP-OFDM
54(4)
2.3 Major Waveform Candidates for 5G and Beyond
58(12)
2.3.1 Multicarrier Schemes
58(1)
2.3.1.1 Windowing
58(1)
2.3.1.2 Subcarrier-Wise Filtering
59(1)
2.3.1.3 Subband-Wise Filtered MCM
63(3)
2.3.2 Single-Carrier Schemes
66(1)
2.3.2.1 CP-DFT-s-OFDM
66(1)
2.3.2.2 ZT-DFT-s-OFDM
67(1)
2.3.2.3 UW-DFT-s-OFDM
69(1)
2.4 Summary
70(3)
2.5 Conclusions
73(1)
References
73(4)
3 Full-Duplex System Design for 5G Access
77(58)
Shu-ping Yeh
Jingwen Bai
Ping Wang
Feng Xue
Yang-seok Choi
Shilpa Talwar
Sung-en Chiu
Vinod Kristem
3.1 Introduction
77(2)
3.2 Self-Interference Cancellation
79(3)
3.2.1 General SIC Architectures
79(1)
3.2.2 Self-Interference Cancellation State of the Art
80(2)
3.3 FD System Design: Opportunities and Challenges
82(2)
3.3.1 New Interferences in FD Systems
82(1)
3.3.1.1 BS-to-BS Interference
83(1)
3.3.1.2 UE-to-UE Interference
83(1)
3.3.2 Efficient Interference Measurement
84(1)
3.3.3 Complexity and Latency Consideration
84(1)
3.4 Designing the FD System
84(24)
3.4.1 Overall Design for FD
85(1)
3.4.2 Design to Mitigate BS-to-BS Interference
85(1)
3.4.2.1 Elevation Beam Nulling
86(1)
3.4.2.2 Uplink Power Control
88(3)
3.4.3 Design to Mitigate UE-to-UE Interference
91(1)
3.4.3.1 Joint Downlink-Uplink Scheduler
91(1)
3.4.3.2 Channel Quality Indicator Feedback for Joint Scheduling
96(1)
3.4.3.3 Interference Measurement and Reference Signal Design
104(1)
3.4.3.4 IM-RS Signal
104(4)
3.5 System-Level Performance Analysis
108(17)
3.5.1 General Simulation Methodology and Assumptions
109(1)
3.5.1.1 Deployment Models
109(1)
3.5.1.2 Channel Models
114(1)
3.5.2 Performance of BS-to-BS Interference Mitigation Schemes
114(4)
3.5.3 System Performance for Schemes to Treat UE-to-UE Interference
118(1)
3.5.3.1 System Performance of Joint Scheduler
118(1)
3.5.3.2 Performance of Various CQI Feedbacks
119(2)
3.5.4 System Performance for Various Operation Regimes
121(1)
3.5.4.1 Performance for Various UE Densities and Bundle Scheduler
122(1)
3.5.4.2 Performance of Various LPN Densities
123(2)
3.6 Conclusions and Future Directions
125(5)
3.6.1 Improvement to the Current Design
126(1)
3.6.1.1 Intercell UE-to-UE Interference Handling
126(1)
3.6.1.2 Traffic Asymmetry
127(1)
3.6.1.3 MIMO Full-Duplex
127(1)
3.6.2 More Scenarios and Future Work
128(1)
3.6.2.1 Full-Duplex Self Backhaul (Relay)
128(1)
3.6.2.2 Full-Duplex Wi-Fi System
129(1)
3.6.2.3 Full-Duplex Application in LAA
129(1)
References
130(5)
4 Nonorthogonal Multiple Access for 5G
135(70)
Linglong Dai
Bichai Wang
Ruicheng Jiao
Zhiguo Ding
Shuangfeng Han
Chih-Lin I
4.1 Introduction
135(2)
4.2 Basic Principles and Advantages of NOMA
137(5)
4.2.1 Channel Capacity Comparison of OMA and NOMA
138(3)
4.2.2 Advantages of NOMA Compared to OMA
141(1)
4.3 Power-Domain NOMA
142(13)
4.3.1 Basic NOMA Relying on a SIC Receiver
143(3)
4.3.2 NOMA in MIMO Systems
146(3)
4.3.3 Cooperative NOMA
149(2)
4.3.4 Network-NOMA
151(1)
4.3.5 User Grouping and Resource Allocation
151(2)
4.3.6 mmWave Communications and Power-Domain NOMA
153(1)
4.3.7 Application of Power-Domain NOMA
153(2)
4.4 Code-Domain NOMA
155(15)
4.4.1 Low-Density Spreading CDMA (LDS-CDMA)
155(5)
4.4.2 Low-Density Spreading-Aided OFDM (LDS-OFDM)
160(2)
4.4.3 Sparse Code Multiple Access
162(5)
4.4.4 Multi User Shared Access
167(2)
4.4.5 Successive Interference Cancellation Aided Multiple Access (SAMA)
169(1)
4.5 Other NOMA Schemes
170(8)
4.5.1 Spatial Division Multiple Access
170(3)
4.5.2 Pattern Division Multiple Access
173(1)
4.5.3 Signature-Based NOMA
173(2)
4.5.4 Interleaver-Based NOMA
175(1)
4.5.5 Spreading-Based NOMA
175(2)
4.5.6 Bit Division Multiplexing
177(1)
4.5.7 CS-Based NOMA
177(1)
4.5.8 Miscellaneous NOMA Schemes
177(1)
4.6 Comparison and Trade-Off Analysis of NOMA Solutions
178(3)
4.7 Performance Evaluations and Transmission Experiments of NOMA
181(4)
4.8 Opportunities and Future Research Trends
185(4)
4.9 Conclusions
189(1)
References
189(16)
5 Code Design for Multiuser MIMO
205(32)
Guanghui Song
Yuhao Chi
Kui Cai
Ying Li
Jun Cheng
5.1 Introduction
206(1)
5.2 Multiuser Repetition-Aided IRA Coding Scheme
207(2)
5.3 Iterative Decoding and EXIT Analysis
209(8)
5.3.1 MUD
210(3)
5.3.2 LDPC-Like Decoding
213(1)
5.3.2.1 Variable Node
213(1)
5.3.2.2 Check Node
214(1)
5.3.3 Turbo-Like Decoding
214(2)
5.3.4 Decoding Complexity Computation
216(1)
5.4 Code Optimization Procedure
217(1)
5.5 Numerical Results and Comparisons
218(12)
5.5.1 AWGN Channel
219(7)
5.5.2 Rayleigh Fading Channel
226(4)
5.6 Conclusion
230(1)
References
231(6)
6 Physical Layer Techniques for 5G Wireless Security
237(38)
Batu K. Chalise
Himal A. Suraweera
Gan Zheng
Risto Wichman
6.1 Introduction
237(4)
6.1.1 Information Theoretic Security
238(2)
6.1.2 Organization of the
Chapter
240(1)
6.2 5G Physical Layer Architecture
241(6)
6.2.1 Full-Duplex Communications
242(2)
6.2.2 Security in Full-Duplex Communications
244(1)
6.2.3 Prior Art
245(1)
6.2.3.1 Bidirectional Topology
245(1)
6.2.3.2 Base Station Topology
246(1)
6.2.3.3 Relay Topology
247(1)
6.3 Secure Full-Duplex Receiver Jamming
247(8)
6.3.1 System Model
249(1)
6.3.2 Transmit and Receive Designs for SI Cancellation and Jamming
250(3)
6.3.3 Results and Discussion
253(2)
6.4 Secure Full-Duplex Bidirectional Communications
255(4)
6.4.1 System Model
255(1)
6.4.2 Optimization for Secure Bidirectional Communications
256(2)
6.4.3 Results and Discussion
258(1)
6.5 Secure Full-Duplex Relay Communications
259(7)
6.5.1 System Model
259(3)
6.5.2 Proposed Optimization Solution
262(3)
6.5.3 Results and Discussion
265(1)
6.6 Future Directions and Open Issues
266(2)
6.7 Conclusion
268(1)
References
269(6)
7 Codebook-Based Beamforming Protocols for 5G Millimeter Wave Communications
275(24)
Anggrit Dewangkara Yudha Pinangkis
Kishor Chandra
R. Venkatesha Prasad
7.1 Introduction
275(3)
7.2 Beamforming Architecture
278(2)
7.2.1 Analog Beamforming
278(1)
7.2.2 Digital Beamforming
279(1)
7.2.3 Hybrid Beamforming
279(1)
7.3 Beam Searching Algorithm
280(6)
7.3.1 IEEE 802.15.3c Beam Searching
282(1)
7.3.2 IEEE 802.11.ad Beam Searching
283(2)
7.3.3 Hierarchical Beam Searching
285(1)
7.4 Codebook Design
286(4)
7.4.1 IEEE 802.15.3c Codebook
286(1)
7.4.2 N-Phase Beamforming
286(1)
7.4.3 DFT-Based Beamforming
287(2)
7.4.4 Fourier Series Method with Kaiser Window (FSM-KW) Beamforming
289(1)
7.5 Beamforming Evaluation
290(1)
7.6 Conclusion
291(2)
References
293(6)
Part II: Radio Access Technology for 5G Networks 299(154)
8 Universal Access in 5G Networks: Potential Challenges and Opportunities for Urban and Rural Environments
301(26)
Syed Ali Hassan
Muhammad Shahmeer Omar
Muhammad Ali Imran
Junaid Qadir
Dushantha Nalin K. Jayakody
8.1 Introduction
301(1)
8.2 Access for Urban Environments
302(10)
8.2.1 Massive MIMO
302(3)
8.2.2 Millimeter Wave Technologies
305(1)
8.2.2.1 Introduction and Background
305(1)
8.2.2.2 Analysis of mmWave Communication
306(1)
8.2.2.3 mmWave as a New Paradigm in Communications
311(1)
8.3 Providing Access to Rural Areas
312(8)
8.3.1 Why Traditional Approaches Do Not Work for Rural Areas?
312(1)
8.3.2 Motivation for Aiming at Coverage in Rural Areas through 5G
312(2)
8.3.3 5G Technologies Thrusts and Universal Coverage
314(1)
8.3.4 Backhaul/Access Solutions for Rural Areas
315(1)
8.3.4.1 Terrestrial 5G Backhaul Solutions
315(1)
8.3.4.2 Airborne 5G Backhaul Solutions
317(1)
8.3.4.3 Joint Optimization of Access and Backhaul
317(1)
8.3.4.4 Application-Specific Design for Rural Coverage
318(1)
8.3.5 Cost-Effective Solutions to Enable Rural 5G
318(1)
8.3.5.1 How to Reduce CAPEX
318(1)
8.3.5.2 How to Reduce OPEX
319(1)
8.3.5.3 How to Jointly Optimize the CAPEX and OPEX
319(1)
8.3.5.4 Use of Self-Organized Networking for Rural Coverage
320(1)
8.4 Conclusions
320(1)
References
321(6)
9 Network Slicing for 5G Networks
327(44)
Xavier Costa-Perez
Andres Garcia-Saavedra
Fabio Giust
Vincenzo Sciancalepore
Xi Li
Zarrar Yousaf
Marco Liebsch
9.1 Introduction
327(1)
9.2 End-to-End Network Slicing
328(6)
9.2.1 Architecture for End-to-End Network Slicing
330(1)
9.2.2 Deployment of Virtual Infrastructure
331(2)
9.2.3 Deployment of Network Services
333(1)
9.2.4 E2E Network Slicing Implementations
334(1)
9.3 Network Slicing MANO
334(9)
9.3.1 Management and Orchestration Architecture
336(3)
9.3.2 Network Slicing MANO Tasks
339(2)
9.3.3 Run Time Management of Network Slices
341(1)
9.3.3.1 Generic QoS/QoE Slice MANO Algorithm
341(2)
9.4 Network Slicing at the Mobile Edge
343(6)
9.4.1 Enabling Solutions for Mobile Edge Slicing
345(1)
9.4.2 Slice Requests Brokering
346(2)
9.4.3 Managing Mobile Edge Slice Resources
348(1)
9.5 Network Slicing at the Mobile Transport
349(9)
9.5.1 Enabling Mobile Transport Slicing Technologies
351(5)
9.5.2 Enabling Slicing Technologies for the Crosshaul MANO
356(1)
9.5.3 Multi-tenancy Application for Slice Management and Orchestration
357(1)
9.6 Network Slicing at the Mobile Cloud
358(6)
9.6.1 Control Plane Modularization to Support Network Slicing
361(2)
9.6.2 User Plane Simplification for Lean Packet Slices
363(1)
9.7 Acknowledgment
364(1)
References
365(6)
10 The Evolution Toward Ethernet-Based Converged 5G RAN
371(56)
Jouni Korhonen
10.1 Introduction to RAN Transport Network
372(12)
10.1.1 Backhaul Network
374(1)
10.1.2 Midhaul Network
375(1)
10.1.3 Fronthaul Network
375(5)
10.1.4 Network Synchronization and Latency in RAN
380(4)
10.2 Evolving RAN Toward 5G Requirements
384(15)
10.2.1 New Radio Functional Splits
388(4)
10.2.2 New RAN Network Architecture
392(3)
10.2.3 5G RAN Migration Concerns
395(1)
10.2.4 Low-Latency Applications and Edge Computing
395(2)
10.2.5 RAN Slicing
397(2)
10.3 Ethernet-Based 5G RAN
399(19)
10.3.1 Ethernet Tools for Time-Sensitive Networking
400(7)
10.3.2 NGFI and XHaul Deployment and Implementation Considerations
407(2)
10.3.3 Radio over Ethernet
409(7)
10.3.4 Next-Generation Ethernet-Based Base Stations
416(2)
10.4 Summary
418(1)
References
418(9)
11 Energy-Efficient 5G Networks Using Joint Energy Harvesting and Scheduling
427(26)
Ahmed Alsharoa
Abdulkadir Celik
Ahmed E. Kamal
11.1 Introduction
427(5)
11.1.1 Sleeping Strategy
428(1)
11.1.2 Energy Harvesting
429(1)
11.1.3 Related Works
430(1)
11.1.4 Contributions
431(1)
11.1.5 Organization
432(1)
11.2 System Model
432(4)
11.2.1 Base Station Power Model
433(2)
11.2.2 Energy Harvesting Model
435(1)
11.3 Problem Formulation and Solution
436(3)
11.3.1 Zero Knowledge Case
436(1)
11.3.2 Perfect Knowledge Case
437(1)
11.3.3 Cost Utility
438(1)
11.3.4 Special Case
438(1)
11.4 Low-Complexity Algorithm
439(2)
11.4.1 Binary Particle Swarm Optimization (BPSO)
439(1)
11.4.2 Genetic Algorithm (GA)
440(1)
11.5 Simulation Results
441(4)
11.6
Chapter Summary
445(1)
11.6.1 Conclusion
445(1)
11.6.2 Possible Future Works
445(1)
11.6.2.1 Massive MIMO
445(1)
11.6.2.2 NOMA
446(1)
References
446(7)
Part III: 5G Network Interworking and Core Network Advancements 453(90)
12 Characterizing and Learning the Mobile Data Traffic in Cellular Network
455(44)
Rongpeng Li
Zhifeng Zhao
Chen Qi
Honggang Zhang
12.1 Understanding the Traffic Nature: A Revisiting to a-Stable Models
455(15)
12.1.1 MIM Working Mechanisms and Dataset Description
456(2)
12.1.2 Background on a-Stable Models
458(1)
12.1.3 The Statistical Pattern and Inherited Methodology of MIM Services
459(1)
12.1.3.1 IML Traffic
459(1)
12.1.3.2 Aggregated Traffic
462(2)
12.1.4 The Extension to Other Services
464(6)
12.1.5 Section Summary
470(1)
12.2 The Traffic Predictability in Cellular Networks
470(6)
12.2.1 Prediction Dataset Description and Analysis Methodology
470(3)
12.2.2 Prediction Analysis: To What Extent Is the Prior Information Required?
473(1)
12.2.2.1 Temporal Dimension
474(1)
12.2.2.2 Spatial Dimension
474(1)
12.2.2.3 Interservice Relationship
475(1)
12.2.3 Section Summary
476(1)
12.3 The Prediction of Application-Level Traffic
476(14)
12.3.1 Sparse Representation and Dictionary Learning
477(1)
12.3.2 The Traffic Prediction Framework
478(1)
12.3.2.1 Problem Formulation
478(1)
12.3.2.2 Optimization Algorithm
482(3)
12.3.3 Performance Evaluation
485(4)
12.3.4 Section Summary
489(1)
12.4 Related Works
490(3)
12.5 Conclusion
493(1)
References
493(6)
13 Network Softwarization View of 5G Networks
499(20)
Takashi Shimizu
Akihiro Nakao
Kohei Satoh
13.1 Introduction
499(1)
13.2 Key Concept of 5G
500(1)
13.3 Network Softwarization View of 5G Networks
501(2)
13.4 Brief History of Network Softwarization and Slicing
503(1)
13.5 Issues for Slicing Towards 5G
504(5)
13.5.1 Horizontal Extension of Slicing
504(1)
13.5.2 Vertical Extension of Slicing: Data Plane Enhancement
505(1)
13.5.3 Considerations for Applicability of Softwarization
506(1)
13.5.4 End-to-End Reference Model for Scalable Operation
506(2)
13.5.5 Coordinated APIs
508(1)
13.6 Information-Centric Network (ICN) Enabled by Network Softwarization
509(6)
13.6.1 General Characteristics
509(1)
13.6.1.1 Overview
509(1)
13.6.1.2 Content Access by Its Name
509(1)
13.6.1.3 Traffic Reduction by In-Network Caching
510(1)
13.6.1.4 Provisioning of In-Network Data Processing
510(1)
13.6.1.5 Content Security
511(1)
13.6.1.6 Robustness to Network Failures by Multipath Routing
511(1)
13.6.2 Applications of ICN
511(1)
13.6.2.1 Networking in a Disaster Area
511(1)
13.6.2.2 Advanced Metering Infrastructure (AMI) on a Smart Grid
512(1)
13.6.2.3 Proactive Caching
512(1)
13.6.2.4 Migration Scenario
513(1)
13.6.2.5 Starting Network
514(1)
13.6.2.6 Phased Deployment: Intermediate Phase
514(1)
13.6.2.7 Target Network
514(1)
13.7 Studies in ITU-T SG13 Focus Group on IMT-2020
515(1)
13.8 Conclusion
515(1)
References
515(4)
14 Machine-Type Communication in the 5G Era: Massive and Ultrareliable Connectivity Forces of Evolution, Revolution, and Complementarity
519(24)
Renaud Di Francesco
Peter Karlsson
14.1 Overview
519(1)
14.2 Introduction
520(2)
14.3 Demand Analysis
522(10)
14.3.1 Machines Serving Humans
522(1)
14.3.2 Eyes and Hands to Control Industrial Systems: SCADA
523(1)
14.3.2.1 Description of SCADA
524(1)
14.3.2.2 Mobile Networks Support for SCADA
524(1)
14.3.2.3 Data Processing in SCADA Systems
525(1)
14.3.2.4 National Electricity Grid Example
525(1)
14.3.3 Machines and 5G
526(1)
14.3.3.1 Digital Transformation of the Machines
526(1)
14.3.3.2 Cyber-Physical System Requirements
527(1)
14.3.3.3 Vertical Use Case Examples
528(1)
14.3.3.4 Machines and Humans
532(1)
14.4 Reviewing the Standardization Path So Far
532(5)
14.4.1 Overview: From 3G to 4G
532(1)
14.4.1.1 From "Voice-Mainly" to "IP Focus"
533(1)
14.4.1.2 Machine-Type Communication
533(1)
14.4.2 The 5G Path Ahead
534(2)
14.4.3 5G Candidate Solution Space
536(1)
14.5 Conclusion on Machine-Type 5G
537(1)
References
538(5)
Part IV: Vertical 5G Applications 543(82)
15 Social-Aware Content Delivery in Device-to-Device Underlay Networks
545(32)
Chen Xu
Caixia Gao
Zhenyu Zhou
Shahid Mumtaz
Jonathan Rodriguez
15.1 Introduction
545(3)
15.2 Related Works
548(4)
15.3 System Model
552(5)
15.3.1 Physical Layer Model
553(2)
15.3.2 Social Layer Model
555(1)
15.3.2.1 Estimation of Probability Distribution
555(1)
15.3.2.2 Intensity of Social Relationship
557(1)
15.4 Problem Formulation
557(1)
15.5 Social Network-Based Content Delivery Matching Algorithm for D2D Underlay Networks
558(7)
15.5.1 Matching Concepts
559(1)
15.5.2 Preference Establishment
559(2)
15.5.3 Three-Dimensional Matching Algorithm
561(1)
15.5.4 Properties of the Three-Dimensional Matching Algorithm
562(1)
15.5.4.1 Convergence
562(1)
15.5.4.2 Stability
564(1)
15.5.4.3 Optimality
564(1)
15.5.4.4 Complexity
564(1)
15.6 Numerical Results
565(4)
15.6.1 Convergence
566(1)
15.6.2 Weighted Sum Rate
567(1)
15.6.3 User Satisfaction
568(1)
15.7 Conclusions
569(1)
References
570(7)
16 Service-Oriented Architecture for loT Home Area Networking in 5G
577(26)
Mohd Rozaini Abd Rahim
Rozeha A. Rashid
Ahmad M. Rateb
Mohd Adib Sarijari
Ahmad Shahidan Abdullah
Abdul Hadi Fikri Abdul Hamid
Hamdan Sayuti
Norsheila Fisal
16.1 Introduction
577(2)
16.2 Service-Oriented Architecture
579(2)
16.3 Related Work
581(3)
16.4 Service-Oriented Architecture for Home Area Network (SoHAN)
584(7)
16.4.1 SoHAN Network
584(2)
16.4.2 Proposed SoHAN Architecture
586(2)
16.4.3 The Proposed SoHAN Middleware Framework
588(1)
16.4.3.1 Sensor-Dependent Sublayer
589(1)
16.4.3.2 Service-Dependent Sublayer
590(1)
16.5 Performance Evaluation
591(5)
16.5.1 Network Model
591(1)
16.5.2 Simulation Setup
591(2)
16.5.3 Results
593(3)
16.6 Conclusion
596(1)
References
597(6)
17 Provisioning Unlicensed LAA Interface for Smart Grid Applications
603(22)
Saba Al-Rubaye
John Cosmos
17.1 Introduction
603(2)
17.2 Smart Grid Architecture-Based 5G Communications
605(3)
17.2.1 Control Center Architecture
606(1)
17.2.2 Home Area Network
606(1)
17.2.3 Neighborhood Area Network
607(1)
17.2.4 Wide Area Network
607(1)
17.3 Bandwidth Utilization Method
608(7)
17.3.1 Bandwidth Detection
610(1)
17.3.2 Interference Avoidance
610(1)
17.3.3 Spectrum Access
611(2)
17.3.4 Bandwidth Utilization
613(2)
17.4 System Implementation and Simulation Platform
615(5)
17.4.1 Enable Career Detection for LAA Unlicensed Interface
615(1)
17.4.2 System Performance and Analysis
616(4)
17.5 Summary and Conclusions
620(1)
References
621(4)
Part V: R&D and 5G Standardization 625(84)
18 5G Communication System: A Network Operator Perspective
627(26)
Bruno Jacobfeuerbom
Frank H.P. Fitzek
18.1 Introduction
627(7)
18.2 Softwarization for the 5G Communication System
634(8)
18.2.1 Network Coding as a Service
637(1)
18.2.1.1 Point to Point
637(1)
18.2.1.2 Point to Multipoint
638(1)
18.2.1.3 Multi-Hop
638(2)
18.2.2 The Mobile Edge Cloud
640(1)
18.2.3 Distributed Edge Caching and Computing
641(1)
18.2.3.1 Block Codes versus Replication
641(1)
18.2.3.2 Network Coding in Distributed Storage Systems
642(1)
18.2.3.3 Security Aspects: Algebraic and Light Weight
642(1)
18.3 5G Holistic Testbed
642(5)
18.4 5G as Game Changer in the Value Chain
647(1)
18.5 Conclusion
647(1)
18.6 Acknowledgments
648(1)
References
649(4)
19 Toward AN-IT 5G End-to-End infrastructure
653(38)
Alex Jinsung Choi
Jinhyo Park
Sungho Jo
Sangsoo Jeong
19.1 Introduction
653(2)
19.1.1 Background and Purpose
653(1)
19.1.2 Evolution Trend of Telco Infrastructure
654(1)
19.1.2.1 Telco Infrastructure Virtualization
654(1)
19.1.2.2 Open Software and Hardware
654(1)
19.1.2.3 Evolution into Platform to Allow "As-a-Service"
654(1)
19.1.2.4 Intelligence and Operation Efficiency
654(1)
19.1.3 SK Telecom's Perspective on NFV/SDN
655(1)
19.2 Development Status and Lesson Learned
655(9)
19.2.1 Radio Access Network
656(1)
19.2.1.1 RAN Virtualization
656(1)
19.2.1.2 Mobile Edge Service (MEC)
656(1)
19.2.2 Core Network
657(1)
19.2.2.1 Virtualized EPC/IMS Commercialization
657(1)
19.2.2.2 NFV MANO (Management and Orchestration) Commercialization
658(1)
19.2.2.3 Service Orchestration PoC
658(1)
19.2.2.4 SDN-based vEPC PoC
658(1)
19.2.3 Transport Network
658(1)
19.2.3.1 Unified Control Function of ROADM/OTN on Commercial Network
659(1)
19.2.3.2 Common Hardware Platform-based POTN
659(1)
19.2.3.3 PTN/POTN Unified Control in Multi-Vendor Environment
659(1)
19.2.4 M-CORD
660(1)
19.2.4.1 Integration of SDN/NFV Technology
661(1)
19.2.4.2 RAN Virtualization/Disaggregation
661(1)
19.2.4.3 EPC Virtualization/Disaggregation
661(1)
19.2.4.4 Mobile Edge Services
662(1)
19.2.5 Operational Intelligence
662(1)
19.2.5.1 Intelligence for Network Big Data Collection/Analytics
663(1)
19.2.5.2 Telco-defined Network Management Indicators
663(1)
19.2.5.3 Big Data-based Automated Operation
663(1)
19.2.5.4 Monitoring and Management of Virtual Resources
663(1)
19.3 Infrastructure Evolution of SK Telecom for 5G: ATSCALE
664(4)
19.3.1 Evolution Direction
664(1)
19.3.1.1 Scalable
664(1)
19.3.1.2 Cognitive
664(1)
19.3.1.3 Automated
665(1)
19.3.1.4 Lean
665(1)
19.3.1.5 End-to-End
665(1)
19.3.2 Telco Functions on COSMOS
665(2)
19.3.3 ATSCALE Architecture
667(1)
19.4 Detailed Architecture and Key Enabling Technology
668(15)
19.4.1 Software-defined RAN
668(1)
19.4.1.1 Fronthaul Enhancement
668(1)
19.4.1.2 CP/UP Separation
669(1)
19.4.1.3 Open Hardware and Software
670(1)
19.4.1.4 MEC
671(1)
19.4.1.5 Analytics (SON) Agent
671(1)
19.4.2 Virtualized Core (vCore)
671(1)
19.4.2.1 Decomposed Control Plane
672(1)
19.4.2.2 Simple User Plane
673(1)
19.4.2.3 Centralized Service Functions (CSF)
673(1)
19.4.3 Unified and Converged Transport Network (uCTN)
673(1)
19.4.3.1 Transport Physical Network Functions
674(1)
19.4.3.2 Virtualized Transport Network Functions
675(1)
19.4.3.3 Transport Infrastructure Orchestrator
675(1)
19.4.4 Unified Orchestration (Unified-0)
676(1)
19.4.4.1 Standardized NFV MANO Framework
676(1)
19.4.4.2 End-to-End Network Orchestration
677(1)
19.4.4.3 Service Orchestration
678(1)
19.4.4.4 Standard Data Model
678(1)
19.4.5 NG-OSS
678(1)
19.4.5.1 Cognitive and Intelligent Automation
680(1)
19.4.5.2 End-to-End Hybrid Resource Management
682(1)
19.5 Value Proposition
683(4)
19.5.1 TCO Reduction
683(1)
19.5.1.1 Open-Source Hardware and Software Delivers Cost Savings
683(1)
19.5.1.2 Optimization Based on Analytics Delivers Operation Cost Savings
684(1)
19.5.2 Platformization of Telco Infrastructure
684(1)
19.5.2.1 Mobile Edge Computing as a Service (MECaaS)
685(1)
19.5.2.2 Analytics as a Service (AaaS)
685(1)
19.5.2.3 Policy as a Service (POaaS)
685(1)
19.5.3 Operation Automation
685(1)
19.5.3.1 Intelligent/Automated Network Operation
685(1)
19.5.3.2 Analytics and Verification with Data Analytics Capabilities
685(1)
19.5.4 Deployment of Operator-Specific Functions
685(1)
19.5.5 Enhanced Service Agility
686(1)
19.5.5.1 Recombinable and Reusable Software Modules with Virtualization
686(1)
19.6 Summary and Conclusion
687(1)
References
687(4)
20 Standardization: The Road to 5G
691(18)
M.P. Galante
G. Romano
20.1 The Role of Standardization
691(2)
20.2 The Main Standardization Bodies
693(1)
20.3 5G Standardization Process
694(3)
20.4 ITU-R
697(2)
20.5 3GPP
699(6)
References
705(4)
Index 709
ANWER AL-DULAIMI, PhD, is a System Engineering Specialist in the R&D department at EXFO, Toronto, Canada.

XIANBIN WANG, PhD, is a professor and Canada Research Chair at Western University, London (Ontario), Canada.

CHIH-LIN I, PhD, is the CMCC Chief Scientist of Wireless Technologies at the China Mobile Research Institute, Beijing, China.