Atnaujinkite slapukų nuostatas

El. knyga: Active Control Of Aircraft Cabin Noise

(Imperial College London, Uk), (Cira, The Italian Aerospace Research Centre, Italy)
Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

'The text is well written and supported by clear and useful illustrations. This would be a useful textbook for postgraduate or advanced undergraduate studies and would also make a good introductory text for engineers moving into the field. The literature survey and bibliography provide a useful starting point for further study.'The Aeronautical JournalActive Control of Aircraft Cabin Noise provides a bridge to fill the gap between robust control theory and practical applications of active noise control systems in aircraft cabin. Both the possibilities and limitations of structural solutions to enhance aircraft cabin comfort by reducing interior noise are discussed supported by a wide range of topics in engineering, from finite element modeling to multichannel adaptive feed-forward control, usually dealt separately in the literature. In addition, experimental noise attenuation results with passengers' subjective perceptions predicting the effects of cabin noise on comfort assessments is examined. Theoretical and experimental research is detailed enough to capture the interest of the non-expert in engineering who wishes to have an overview of some of the active noise control applications in aircraft. This book may be used as an advanced textbook by graduate and undergraduate students in aeronautical engineering, and would be an authoritative resource book for research into the subject.
Preface xi
Nomenclature xv
1 Aircraft Noise Control 1(16)
1.1 Introduction
1(6)
1.2 Active Noise Control and Active Structural Acoustic Control
7(5)
1.2.1 Active noise control applications in aircraft
9(3)
1.3 Book Overview
12(5)
2 Fundamentals in Structural Acoustics 17(36)
2.1 Introduction
17(2)
2.2 Metrics of Sound Transmission
19(4)
2.2.1 Sound pressure level
20(1)
2.2.2 Sound insertion loss
21(1)
2.2.3 Sound transmission loss
22(1)
2.3 Transmission Loss Experiments
23(2)
2.4 Experimental Modal Analysis
25(4)
2.4.1 Basics in structural dynamics
26(2)
2.4.2 Modal parameter estimation algorithms
28(1)
2.5 The Acoustic Wave Equation and the Helmholtz Equation
29(5)
2.5.1 The inhomogeneous wave equation
31(1)
2.5.2 The solution to the inhomogeneous wave equation
31(2)
2.5.3 Free space sound radiation
33(1)
2.5.4 The Kirchoff-Helmholtz integral equation
34(1)
2.6 Sound Radiation from Vibrating Flat Panels
34(10)
2.6.1 Sound power radiation
37(2)
2.6.2 Elemental radiators
39(2)
2.6.3 Radiation modes
41(1)
2.6.4 Sound radiation efficiency
42(2)
2.7 Finite Element Method for Interior Problems
44(5)
2.8 Coupled FE Formulation for Interior Vibro-Acoustic Systems
49(2)
2.9 Summary
51(2)
3 Transmission of Sound through Multiple Partitions 53(40)
3.1 Introduction
53(2)
3.2 Analytical Modelling of Multi-Panel Partitions
55(14)
3.2.1 Infinite panels
55(4)
3.2.2 Modal coupling theory
59(4)
3.2.3 Structure-acoustic modal coupling in triple-panel partitions
63(6)
3.3 Sound Transmission Through Infinite Triple Partitions
69(10)
3.3.1 Analysis of the derived equations
73(6)
3.4 Sound Transmission Simulation
79(12)
3.4.1 Diffuse acoustic excitation model
81(1)
3.4.2 Benchmark examples
82(9)
3.5 Summary
91(2)
4 Adaptive Control of Sound Radiation 93(46)
4.1 Introduction
93(4)
4.2 Control of Sound Radiation by Structural Actuators
97(4)
4.3 Control Strategies
101(4)
4.3.1 Feedforward control
101(1)
4.3.2 Feedback control
102(2)
4.3.3 Feedforward vs. feedback control
104(1)
4.4 Steepest-Descent Algorithm
105(2)
4.5 Adaptive Digital Filters
107(3)
4.6 Filtered-X LMS Algorithm
110(1)
4.7 Multi-Channel Adaptive Algorithms
111(3)
4.8 Experimental System Identification
114(4)
4.9 Numerical Simulations
118(17)
4.9.1 Harmonic primary noise
122(3)
4.9.2 Random primary noise
125(5)
4.9.3 Narrow-band primary noise
130(5)
4.10 Summary
135(4)
5 Noise-Reducing Smart Windows 139(50)
5.1 Introduction
139(4)
5.2 Literature Survey
143(8)
5.2.1 Control of sound transmission through multi-wall partitions: panel control
146(2)
5.2.2 Control of sound transmission through multi-wall partitions: cavity control
148(3)
5.3 Piezoelectricity
151(5)
5.4 Smart Window Design
156(16)
5.4.1 Scope
158(2)
5.4.2 Numerical modelling
160(5)
5.4.3 Structural control actuators
165(7)
5.5 Smart Window Test-Bed
172(14)
5.5.1 Experimental modal analysis
174(3)
5.5.2 Control actuators set-up
177(9)
5.6 Transmission Loss Predictions
186(1)
5.7 Summary
187(2)
6 Active Noise Control Experiments 189(56)
6.1 Introduction
189(2)
6.2 Experimental Set-Up
191(4)
6.3 Instrumentation
195(1)
6.4 Imperfections in the Experimental Set-Up
196(10)
6.4.1 Coupled vibro-acoustic model of the sending room
198(4)
6.4.2 Experimental validation
202(4)
6.5 Real-Time DSP Implementation of Active Noise Control
206(25)
6.5.1 The real-time controller
207(4)
6.5.2 Experimental results
211(20)
6.6 Sound Intensity Measurements
231(8)
6.6.1 Experimental results
233(6)
6.7 Passenger Comfort Estimation
239(4)
6.7.1 Subjective noise perception
239(2)
6.7.2 Virtual Passenger Model
241(2)
6.8 Summary
243(2)
A Benchmark Examples 245(8)
A.1 Introduction
245(1)
A.2 Laminar Piezoelectric Sensor
245(2)
A.3 Cantilever Piezoelectric Plate
247(6)
A.3.1 Static analysis
247(2)
A.3.2 Dynamic analysis
249(4)
B Sound Power Simulations 253(6)
B.1 Radiation Efficiency
253(2)
B.2 Radiation Efficiency of the Window Test-Bed
255(4)
C Preliminary Experimental Studies 259(4)
Bibliography 263(16)
Index 279