Atnaujinkite slapukų nuostatas

El. knyga: Active Pharmaceutical Ingredients in Synthesis: Catalytic Processes in Research and Development

(University of Evora, Evora, Portugal), (University of Manchester), (Chiratecnics, UK), (University of Evora, Evora, Portugal)
  • Formatas: PDF+DRM
  • Išleidimo metai: 20-Jul-2018
  • Leidėjas: John Wiley & Sons Inc
  • Kalba: eng
  • ISBN-13: 9783527807246
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Išleidimo metai: 20-Jul-2018
  • Leidėjas: John Wiley & Sons Inc
  • Kalba: eng
  • ISBN-13: 9783527807246
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Presents the most effective catalytic reactions in use today, with a special focus on process intensification, sustainability, waste reduction, and innovative methods

This book demonstrates the importance of efficient catalytic transformations for producing pharmaceutically active molecules. It presents the key catalytic reactions and the most efficient catalytic processes, including their significant advantages over compared previous methods. It also places a strong emphasis on asymmetric catalytic reactions, process intensification (PI), sustainability and waste mitigation, continuous manufacturing processes as enshrined by continuous flow catalysis, and supported catalysis.

Active Pharmaceutical Ingredients in Synthesis: Catalytic Processes in Research and Development offers chapters covering: Catalysis and Prerequisites for the Modern Pharmaceutial Industry Landscape; Catalytic Process Design - The Industrial Perspective; Hydrogenation, Hydroformylation and Other Reductions; Oxidation; ; Catalytic Addition Reactions; Catalytic Cross-Coupling Reactions; Catalytic Metathesis Reactions; Catalytic Cycloaddition Reactions: Coming Full-Circle; Catalytic Cyclopropanation Reactions; Catalytic C-H insertion Reactions; Phase Transfer Catalysis; and Biocatalysis.

-Provides the reader with an updated clear view of the current state of the challenging field of catalysis for API production -Focuses on the application of catalytic methods for the synthesis of known APIs -Presents every key reaction, including Diels-Alder, CH Insertions, Metal-catalytic coupling-reactions, and many more -Includes recent patent literature for completeness

Covering a topic of great interest for synthetic chemists and R&D researchers in the pharmaceutical industry, Active Pharmaceutical Ingredients in Synthesis: Catalytic Processes in Research and Development is a must-read for every synthetic chemist working with APIs.
Foreword xi
Preface xiii
Abbreviations xvii
1 Catalysis and Prerequisites for the Modern Pharmaceutical Industry Landscape
1(30)
1.1 Introduction
1(1)
1.2 Key Historical Moments in Catalysis Development
2(9)
1.3 Key Historical Developments in Catalysis for API Synthesis: Including Catalytic Asymmetric Synthesis
11(9)
1.4 Catalytic Synthesis of APIs in the Twenty-First Century: New Developments, Paradigm Shifts, and Future Challenges
20(6)
1.5 Conclusions
26(5)
References
26(5)
2 Catalytic Process Design: The Industrial Perspective
31(44)
2.1 Introduction
31(1)
2.2 Process Design
32(17)
2.2.1 Heterogeneous and Homogeneous Catalysts
32(4)
2.2.2 Product Safety and Regulatory Requirements
36(1)
2.2.3 Control of Residual Metals
37(1)
2.2.3.1 Filtration and Adsorption
38(1)
2.2.3.2 Extraction and Scavenging
38(3)
2.2.3.3 Organic Solvent Nanofiltration (OSN)
41(2)
2.2.4 Design of Experiment (DoE)
43(2)
2.2.5 Catalyst Recycling
45(1)
2.2.6 Scalability, Safety, and Environmental Aspects
46(3)
2.3 Examples of Homogeneous and Heterogeneous Catalytic Reactions in API Manufacture
49(18)
2.3.1 Batch Operations
49(14)
2.3.2 Continuous-Flow Operations
63(4)
2.4 Conclusions
67(8)
References
68(7)
3 Hydrogenation, Hydroformylation, and Other Reductions
75(38)
3.1 Introduction
75(1)
3.2 Hydrogenation
75(13)
3.2.1 Hydrogenation of Alkenes
77(1)
3.2.1.1 Enamides
77(7)
3.2.2 Hydrogenation of Carbonyl Groups
84(3)
3.2.3 Hydrogenation of Imines
87(1)
3.3 Transfer Hydrogenation
88(6)
3.3.1 On Ketones
88(4)
3.3.2 On Imines
92(2)
3.4 Reductions with Oxazaborolidine Catalytic Systems
94(2)
3.5 Hydroformylation
96(7)
3.6 Reductions with Organocatalysts
103(1)
3.7 Other Catalytic Reductions
104(3)
3.7.1 Reduction of Nitro Units
104(3)
3.7.2 Other Reductions
107(1)
3.8 Conclusions
107(6)
References
108(5)
4 Oxidation: Nobel Prize Chemistry Catalysis
113(34)
4.1 Introduction
113(1)
4.2 Olefin Epoxidation
113(8)
4.2.1 Metal-based Electrophilic Methods
113(1)
4.2.1.1 The Sharpless--Katsuki Asymmetric Epoxidation
113(3)
4.2.1.2 The Jacobsen--Katsuki Asymmetric Epoxidation
116(3)
4.2.2 Nucleophilic Methods
119(1)
4.2.2.1 Nucleophilic Methods with Hydrogen Peroxide
119(1)
4.2.3 Organocatalytic Methods
119(2)
4.3 Olefin Dihydroxylation
121(4)
4.4 Olefin Aminohydroxylation
125(2)
4.5 Sulfur Oxidation
127(6)
4.5.1 Synthesis of Sulfoxides -- Use of Titanium, Molybdenum, and Vanadium Catalysts
127(5)
4.5.2 Synthesis of Sulfones -- Use of Tungsten Catalysts
132(1)
4.6 Catalytic Oxidation of Carbonyls -- Cu/Nitroxyl and Nitroxyl/NOx Catalytic Systems
133(6)
4.7 Oxidative Dehydrogenations (ODs)
139(2)
4.8 Conclusions
141(6)
References
142(5)
5 Catalytic Addition Reactions
147(28)
5.1 Introduction
147(1)
5.2 1,2-Additions
148(10)
5.3 1,4-Additions
158(12)
5.4 Conclusions
170(5)
References
171(4)
6 Catalytic Cross-Coupling Reactions -- Nobel Prize Catalysis
175(84)
6.1 Introduction
175(1)
6.2 Heck--Mizoroki Reaction
176(19)
6.3 The Suzuki--Miyaura Reaction
195(15)
6.4 The Buchwald--Hartwig Reaction
210(14)
6.5 The Sonogashira--Hagihara Reaction
224(10)
6.6 The Allylic Substitution Reaction
234(5)
6.7 C--H Activation Processes
239(9)
6.8 Oxidative C--C Bond Formation
248(3)
6.9 Conclusions
251(8)
References
251(8)
7 Catalytic Metathesis Reactions: Nobel Prize Catalysis
259(32)
7.1 Introduction
259(5)
7.2 Metathesis with Ru-Based Catalysts
264(19)
7.3 Mo-Based Metathesis
283(3)
7.4 Conclusions
286(5)
References
286(5)
8 Catalytic Cycloaddition Reactions: Coming Full Circle
291(30)
8.1 Introduction
291(1)
8.2 The "Classical" Catalytic Diels--Alder Reaction -- Closing the Circle
291(8)
8.3 The Catalytic Hetero-Diels--Alder (hDA) Reaction
299(3)
8.4 The Catalytic [ 3+2] Cycloaddition Reaction
302(10)
8.4.1 1,3-Dipolar Azomethine Ylide Cycloadditions
302(5)
8.4.2 [ 3+2] Cycloadditions with Carbonyl Ylides
307(1)
8.4.3 The Azide Catalytic [ 3+2] Cycloaddition Reaction -- The Dawn of Click Chemistry
308(4)
8.5 Other Cycloaddition Reactions
312(4)
8.5.1 [ 2+2] Cycloaddition
312(1)
8.5.2 [ 2+2+2] Cycloaddition
313(2)
8.5.3 [ 5+2] Cycloaddition
315(1)
8.6 Conclusions
316(5)
References
317(4)
9 Catalytic Cyclopropanation Reactions
321(20)
9.1 Introduction
321(2)
9.2 Metal-Catalyzed Processes
323(15)
9.3 Conclusions
338(3)
References
338(3)
10 Catalytic C--H Insertion Reactions
341(18)
10.1 Introduction
341(1)
10.2 Metal-Catalyzed Processes
342(14)
10.3 Conclusions
356(3)
References
357(2)
11 Phase-Transfer Catalysis
359(28)
11.1 Introduction
359(1)
11.2 Achiral Phase-Transfer Catalysis
360(9)
11.3 Asymmetric Phase-Transfer Catalysis
369(13)
11.4 Conclusions
382(5)
References
382(5)
12 Biocatalysis
387(28)
12.1 Introduction
387(1)
12.2 Hydrolysis and Reverse Hydrolysis
388(6)
12.3 Reduction
394(5)
12.4 Oxidation
399(3)
12.5 C---X Bond Formation
402(9)
12.6 Conclusions
411(4)
References
411(4)
Index 415
Anthony J. Burke, PhD, is Professor at the University of Evora, and the coordinator of the organic and organometallic research line at the Centro de Quķmica de Evora.

Carolina S. Marques, PhD, is working as a PostDoc in the Burke group.

Nicholas J. Turner, PhD, is Professor of Chemical Biology, Director of the Centre of Excellence in Biocatalysis (CoEBio3) and co-Director of SYNBIOCHEM.



Gesine J. Hermann, PhD, is a research and business consultant for ChiraTecnics, Portugal.