Atnaujinkite slapukų nuostatas

El. knyga: Active Statistics: Stories, Games, Problems, and Hands-on Demonstrations for Applied Regression and Causal Inference

(Aalto University, Finland), (Columbia University, New York)
  • Formatas: PDF+DRM
  • Išleidimo metai: 14-Mar-2024
  • Leidėjas: Cambridge University Press
  • Kalba: eng
  • ISBN-13: 9781009436250
  • Formatas: PDF+DRM
  • Išleidimo metai: 14-Mar-2024
  • Leidėjas: Cambridge University Press
  • Kalba: eng
  • ISBN-13: 9781009436250

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Applied regression and causal inference are central to statistics and data science. This book provides a large collection of stories, with hands-on activities, demonstrations, and problems that bring the subject to life and which facilitate group work and active student participation.

This book provides statistics instructors and students with complete classroom material for a one- or two-semester course on applied regression and causal inference. It is built around 52 stories, 52 class-participation activities, 52 hands-on computer demonstrations, and 52 discussion problems that allow instructors and students to explore in a fun way the real-world complexity of the subject. The book fosters an engaging 'flipped classroom' environment with a focus on visualization and understanding. The book provides instructors with frameworks for self-study or for structuring the course, along with tips for maintaining student engagement at all levels, and practice exam questions to help guide learning. Designed to accompany the authors' previous textbook Regression and Other Stories, its modular nature and wealth of material allow this book to be adapted to different courses and texts or be used by learners as a hands-on workbook.

Recenzijos

'This book is an extraordinarily rich and generous resource for teaching statistics. Full of stories about challenging statistical problems, the examples reflect all the messiness of real life, and encourage class discussion of what went wrong and how to do things better. The extensive collection of lesson plans and exercises provides a fine inspiration to adopt a different, more active, style of teaching.' David Spiegelhalter, University of Cambridge 'This is a wonderful read for any statistics teacher. The focus on real-world applications and statistical thinking ensures that everyone will gain new insights and perspectives no matter how long you have been teaching.' Beth Chance, California Polytechnic State University 'I have to say reading this book came as a pleasant surprise for me. I thought I was going to be reviewing another statistics book and instead, it was an insightful read on how to think about teaching statistics. I found it engaging and helpful in rethinking how I approach teaching statistics.' Pamela Davis-Kean, University of Michigan

Daugiau informacijos

52 real-world stories, with hands-on activities, problems, and computer demonstrations in R for learning or teaching regression.
How to use this book; Part I. Organizing a Plan of Study:
1. Active learning;
2. Setting up a course of study;
3. In the classroom; Part II. Stories, Activities, Problems, and Demonstrations:
4. Week by week: the first semester;
5. Week by week: the second semester; Appendixes: A. Pre-test questions; B. Final exam questions; C. Outlines of classroom activities.
The authors are experienced researchers who have published articles in hundreds of different scientific journals in fields including statistics, computer science, policy, public health, political science, economics, sociology, and engineering. They have also published articles in the Washington Post, New York Times, Slate, and other public venues. Their previous books include Bayesian Data Analysis, Teaching Statistics: A Bag of Tricks, and Regression and Other Stories. Andrew Gelman is Higgins Professor of Statistics and Professor of Political Science at Columbia University. Aki Vehtari is Professor in Computational Probabilistic Modeling at Aalto University, Finland.