Atnaujinkite slapukų nuostatas

El. knyga: Actuarial Loss Models: A Concise Introduction

(University of Connecticut, U.S.A)

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

"Actuarial loss models are statistical models used by insurance companies to estimate the frequency and severity of future losses, set premiums, and reserve funds to cover potential claims. Actuarial loss models are a subject in actuarial mathematics that focus on the pricing and reserving for short-term coverages. This is a concise textbook written for undergraduate students majoring in actuarial science who wish to learn the basics of actuarial loss models. This book can be used as a textbook for a one-semester course on actuarial loss models. The prerequisite for this book is a first course on calculus. The reader is supposed to be familiar with differentiation and integration. This book covers part of the learning outcomes of the Fundamentals of Actuarial Mathematics (FAM) exam and the Advanced Short-Term Actuarial Mathematics (ASTAM) exam administered by the Society of Actuaries. It can be used by actuarial students and practitioners who prepare for the aforementioned actuarial exams"--

This book covers part of the learning outcomes of the Fundamentals of Actuarial Mathematics (FAM) exam and the Advanced Short-Term Actuarial Mathematics (ASTAM) exam administered by the Society of Actuaries. It can be used by students and practitioners who prepare for actuarial exams.



Actuarial loss models are statistical models used by insurance companies to estimate the frequency and severity of future losses, set premiums, and reserve funds to cover potential claims. Actuarial loss models are a subject in actuarial mathematics that focus on the pricing and reserving for short-term coverages.

This is a concise textbook written for undergraduate students majoring in actuarial science who wish to learn the basics of actuarial loss models. This book can be used as a textbook for a one-semester course on actuarial loss models. The prerequisite for this book is a first course on calculus. The reader is supposed to be familiar with differentiation and integration.

This book covers part of the learning outcomes of the Fundamentals of Actuarial Mathematics (FAM) exam and the Advanced Short-Term Actuarial Mathematics (ASTAM) exam administered by the Society of Actuaries. It can be used by actuarial students and practitioners who prepare for the aforementioned actuarial exams.

Key Features:

  • Review core concepts in probability theory.
  • Cover important topics in actuarial loss models.
  • Include worked examples.
  • Provide both theoretical and numerical exercises.
  • Include solutions of selected exercises.

Preface
1. Probability Theory
2. Frequency Models
3. Severity Models
4. Aggregate Loss Models
5. Coverage Modifications
6. Model Estimation
7. Model Selection
8. Credibility Models
9. Risk Measures A. Useful Results from Calculus B. Special Functions C. Normal Distribution Table D. R Code E. Solutions to Selected Exercises Bibliography List of Symbols Index

Guojun Gan is an Associate Professor in the Department of Mathematics at the University of Connecticut, Storrs, Connecticut, USA. He received a BS degree from Jilin University, Changchun, China, in 2001 and MS and PhD degrees from York University, Toronto, Canada, in 2003 and 2007, respectively. His research interests are in the interdisciplinary areas of actuarial science and data science.