Atnaujinkite slapukų nuostatas

El. knyga: Adaptive Modelling, Estimation and Fusion from Data: A Neurofuzzy Approach

  • Formatas: PDF+DRM
  • Serija: Advanced Information Processing
  • Išleidimo metai: 05-Oct-2012
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783642182426
  • Formatas: PDF+DRM
  • Serija: Advanced Information Processing
  • Išleidimo metai: 05-Oct-2012
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783642182426

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

In a world of almost permanent and rapidly increasing electronic data availability, techniques of filtering, compressing, and interpreting this data to transform it into valuable and easily comprehensible information is of utmost importance. One key topic in this area is the capability to deduce future system behavior from a given data input. This book brings together for the first time the complete theory of data-based neurofuzzy modelling and the linguistic attributes of fuzzy logic in a single cohesive mathematical framework. After introducing the basic theory of data-based modelling, new concepts including extended additive and multiplicative submodels are developed and their extensions to state estimation and data fusion are derived. All these algorithms are illustrated with benchmark and real-life examples to demonstrate their efficiency. Chris Harris and his group have carried out pioneering work which has tied together the fields of neural networks and linguistic rule-based algortihms. This book is aimed at researchers and scientists in time series modeling, empirical data modeling, knowledge discovery, data mining, and data fusion.

This book brings together for the first time the complete theory of data based neurofuzzy modelling and the linguistic attributes of fuzzy logic in a single cohesive mathematical framework. After introducing the basic theory of data based modelling new concepts including extended additive and multiplicative submodels are developed. All of these algorithms are illustrated with benchmark examples to demonstrate their efficiency. The book aims at researchers and advanced professionals in time series modelling, empirical data modelling, knowledge discovery, data mining and data fusion.

Recenzijos

From the reviews:









"This is an account of a major development by a research group in Southampton University on the extension of adaptive techniques to nonlinear and nonstationary environments. There seems to be no doubt that this well-presented book is indispensable for anyone concerned with difficult nonlinear problems of control." (Alex M. Andrew, Robotica, Vol. 22, 2004)



"This book brings together for the first time the complete theory of data-based neurofuzzy modelling and the linguistic attributes of fuzzy logic in a single cohesive mathematical framework. This book is aimed at researchers and scientists in time series modelling, empirical data modelling, knowledge discovery, data mining, and data fusion." (Nikolay Yakovlevich Tikhonenko, Zentralblatt MATH, Vol. 1005, 2003)

Daugiau informacijos

Springer Book Archives
An introduction to modelling and learning algorithms
1(24)
Introduction to modelling
1(6)
Modelling, control and learning algorithms
7(2)
The learning problem
9(4)
Book philosophy and contents overview
13(12)
Book overview
13(8)
A historical perspective of adaptive modelling and control
21(4)
Basic concepts of data-based modelling
25(28)
Introduction
25(1)
State-space models versus input-output models
26(3)
Conversion of state-space models to input-output models
26(2)
Conversion of input-output models to state-space models
28(1)
Nonlinear modelling by basis function expansion
29(2)
Model parameter estimation
31(2)
Model quality
33(6)
The bias-variance dilemma
33(1)
Bias-variance balance by model structure regularization
34(5)
Reproducing kernels and regularization networks
39(3)
Model selection methods
42(7)
Model selection criteria
43(1)
Model selection criteria sensitivity
44(1)
Correlation tests
45(4)
An example: time series modelling
49(4)
Learning laws for linear-in-the-parameters networks
53(18)
Introduction to learning
53(2)
Error or performance surfaces
55(3)
Batch learning laws
58(3)
General learning laws
58(1)
Gradient descent algorithms
59(2)
Instantaneous learning laws
61(7)
Least mean squares learning
61(1)
Normalized least mean squares learning
62(1)
NLMS weight convergence
63(4)
Recursive least squares estimation
67(1)
Gradient noise and normalized condition numbers
68(2)
Adaptive learning rates
70(1)
Fuzzy and neurofuzzy modelling
71(32)
Introduction to fuzzy and neurofuzzy systems
71(3)
Fuzzy systems
74(17)
Fuzzy sets
75(8)
Fuzzy operators
83(4)
Fuzzy relation surfaces
87(1)
Inferencing
88(1)
Fuzzification and defuzzification
89(2)
Functional mapping and neurofuzzy models
91(4)
Takagi-Sugeno local neurofuzzy model
95(2)
Neurofuzzy modelling examples
97(6)
Thermistor modelling
97(2)
Time series modelling
99(4)
Parsimonious neurofuzzy modelling
103(50)
Iterative construction modelling
103(3)
Additive neurofuzzy modelling algorithms
106(1)
Adaptive spline modelling algorithm (ASMOD)
107(12)
ASMOD refinements
107(4)
Illustrative examples of ASMOD
111(8)
Extended additive neurofuzzy models
119(6)
Weight identification
122(2)
Extended additive model structure identification
124(1)
Hierarchical neurofuzzy models
125(4)
Regularized neurofuzzy models
129(14)
Bayesian regularisation
129(3)
Error bars
132(1)
Priors for neurofuzzy models
133(3)
Local regularized neurofuzzy models
136(7)
Complexity reduction through orthogonal least squares
143(1)
A-optimality neurofuzzy model construction (NeuDec)
144(9)
Local neurofuzzy modelling
153(48)
Introduction
153(4)
Local orthogonal partitioning algorithms
157(7)
k - d Trees
157(4)
Quad-trees
161(3)
Operating point dependent neurofuzzy models
164(4)
State space representations of operating point dependent neurofuzzy models
168(5)
Mixture of experts modelling
173(14)
Multi-input-Multi-output (MIMO) modelling via input variable selection
187(14)
MIMO NARX neurofuzzy model decomposition
187(4)
Feedforward Gram-Schmidt OLS procedure for linear systems
191(2)
Input variable selection via the modified Gram-Schmidt OLS for piecewise linear submodels
193(8)
Delaunay input space partitioning modelling
201(24)
Introduction
201(1)
Delaunay triangulation of-the input space
202(2)
Delaunay input space partitioning for locally linear models
204(5)
The Bezier-Bernstein modelling network
209(16)
Neurofuzzy modelling using Bezier-Bernstein function for univariate term fi(xi) and bivariate term fi1, j1 (xi1, xj1)
209(10)
The complete Bezier-Bernstein model construction algorithm
219(1)
Numerical examples
220(5)
Neurofuzzy linearisation modelling for nonlinear state estimation
225(30)
Introduction to linearisation modelling
225(3)
Neurofuzzy local linearisation and the MASMOD algorithm
228(8)
A hybrid learning scheme combining MASMOD and EM algorithms for neurofuzzy local linearisation
236(3)
Neurofuzzy feedback linearisation (NFFL)
239(6)
Formulation of neurofuzzy state estimators
245(4)
An example of nonlinear trajectory estimation
249(6)
Multisensor data fusion using Kalman filters based on neurofuzzy linearisation
255(26)
Introduction
255(3)
Measurement fusion
258(5)
Outputs augmented fusion (OAF)
259(1)
Optimal weighting measurement fusion (OWMF)
259(1)
On functional equivalence of OAF and OWMF
260(2)
On the decentralized architecture
262(1)
State-vector fusion
263(3)
State-vector assimilation fusion (SVAF)
263(1)
Track-to-track fusion (TTF)
264(1)
On the decentralized architecture
265(1)
Hierarchical multisensor data fusion-trade-off between centralized and decentralized Architectures
266(1)
Simulation examples
267(14)
On functional equivalence of two measurement fusion methods
267(4)
On hierarchical multisensor data fusion
271(10)
Support vector neurofuzzy models
281(26)
Introduction
281(1)
Support vector machines
282(4)
Loss functions
284(1)
Feature space and kernel functions
284(2)
Support vector regression
286(3)
Support vector neurofuzzy networks
289(8)
Supanova
297(6)
A comparison among neural network models
303(1)
Conclusions
304(3)
References 307(12)
Index 319