|
An introduction to modelling and learning algorithms |
|
|
1 | (24) |
|
Introduction to modelling |
|
|
1 | (6) |
|
Modelling, control and learning algorithms |
|
|
7 | (2) |
|
|
9 | (4) |
|
Book philosophy and contents overview |
|
|
13 | (12) |
|
|
13 | (8) |
|
A historical perspective of adaptive modelling and control |
|
|
21 | (4) |
|
Basic concepts of data-based modelling |
|
|
25 | (28) |
|
|
25 | (1) |
|
State-space models versus input-output models |
|
|
26 | (3) |
|
Conversion of state-space models to input-output models |
|
|
26 | (2) |
|
Conversion of input-output models to state-space models |
|
|
28 | (1) |
|
Nonlinear modelling by basis function expansion |
|
|
29 | (2) |
|
Model parameter estimation |
|
|
31 | (2) |
|
|
33 | (6) |
|
The bias-variance dilemma |
|
|
33 | (1) |
|
Bias-variance balance by model structure regularization |
|
|
34 | (5) |
|
Reproducing kernels and regularization networks |
|
|
39 | (3) |
|
|
42 | (7) |
|
|
43 | (1) |
|
Model selection criteria sensitivity |
|
|
44 | (1) |
|
|
45 | (4) |
|
An example: time series modelling |
|
|
49 | (4) |
|
Learning laws for linear-in-the-parameters networks |
|
|
53 | (18) |
|
|
53 | (2) |
|
Error or performance surfaces |
|
|
55 | (3) |
|
|
58 | (3) |
|
|
58 | (1) |
|
Gradient descent algorithms |
|
|
59 | (2) |
|
Instantaneous learning laws |
|
|
61 | (7) |
|
Least mean squares learning |
|
|
61 | (1) |
|
Normalized least mean squares learning |
|
|
62 | (1) |
|
|
63 | (4) |
|
Recursive least squares estimation |
|
|
67 | (1) |
|
Gradient noise and normalized condition numbers |
|
|
68 | (2) |
|
|
70 | (1) |
|
Fuzzy and neurofuzzy modelling |
|
|
71 | (32) |
|
Introduction to fuzzy and neurofuzzy systems |
|
|
71 | (3) |
|
|
74 | (17) |
|
|
75 | (8) |
|
|
83 | (4) |
|
|
87 | (1) |
|
|
88 | (1) |
|
Fuzzification and defuzzification |
|
|
89 | (2) |
|
Functional mapping and neurofuzzy models |
|
|
91 | (4) |
|
Takagi-Sugeno local neurofuzzy model |
|
|
95 | (2) |
|
Neurofuzzy modelling examples |
|
|
97 | (6) |
|
|
97 | (2) |
|
|
99 | (4) |
|
Parsimonious neurofuzzy modelling |
|
|
103 | (50) |
|
Iterative construction modelling |
|
|
103 | (3) |
|
Additive neurofuzzy modelling algorithms |
|
|
106 | (1) |
|
Adaptive spline modelling algorithm (ASMOD) |
|
|
107 | (12) |
|
|
107 | (4) |
|
Illustrative examples of ASMOD |
|
|
111 | (8) |
|
Extended additive neurofuzzy models |
|
|
119 | (6) |
|
|
122 | (2) |
|
Extended additive model structure identification |
|
|
124 | (1) |
|
Hierarchical neurofuzzy models |
|
|
125 | (4) |
|
Regularized neurofuzzy models |
|
|
129 | (14) |
|
|
129 | (3) |
|
|
132 | (1) |
|
Priors for neurofuzzy models |
|
|
133 | (3) |
|
Local regularized neurofuzzy models |
|
|
136 | (7) |
|
Complexity reduction through orthogonal least squares |
|
|
143 | (1) |
|
A-optimality neurofuzzy model construction (NeuDec) |
|
|
144 | (9) |
|
Local neurofuzzy modelling |
|
|
153 | (48) |
|
|
153 | (4) |
|
Local orthogonal partitioning algorithms |
|
|
157 | (7) |
|
|
157 | (4) |
|
|
161 | (3) |
|
Operating point dependent neurofuzzy models |
|
|
164 | (4) |
|
State space representations of operating point dependent neurofuzzy models |
|
|
168 | (5) |
|
Mixture of experts modelling |
|
|
173 | (14) |
|
Multi-input-Multi-output (MIMO) modelling via input variable selection |
|
|
187 | (14) |
|
MIMO NARX neurofuzzy model decomposition |
|
|
187 | (4) |
|
Feedforward Gram-Schmidt OLS procedure for linear systems |
|
|
191 | (2) |
|
Input variable selection via the modified Gram-Schmidt OLS for piecewise linear submodels |
|
|
193 | (8) |
|
Delaunay input space partitioning modelling |
|
|
201 | (24) |
|
|
201 | (1) |
|
Delaunay triangulation of-the input space |
|
|
202 | (2) |
|
Delaunay input space partitioning for locally linear models |
|
|
204 | (5) |
|
The Bezier-Bernstein modelling network |
|
|
209 | (16) |
|
Neurofuzzy modelling using Bezier-Bernstein function for univariate term fi(xi) and bivariate term fi1, j1 (xi1, xj1) |
|
|
209 | (10) |
|
The complete Bezier-Bernstein model construction algorithm |
|
|
219 | (1) |
|
|
220 | (5) |
|
Neurofuzzy linearisation modelling for nonlinear state estimation |
|
|
225 | (30) |
|
Introduction to linearisation modelling |
|
|
225 | (3) |
|
Neurofuzzy local linearisation and the MASMOD algorithm |
|
|
228 | (8) |
|
A hybrid learning scheme combining MASMOD and EM algorithms for neurofuzzy local linearisation |
|
|
236 | (3) |
|
Neurofuzzy feedback linearisation (NFFL) |
|
|
239 | (6) |
|
Formulation of neurofuzzy state estimators |
|
|
245 | (4) |
|
An example of nonlinear trajectory estimation |
|
|
249 | (6) |
|
Multisensor data fusion using Kalman filters based on neurofuzzy linearisation |
|
|
255 | (26) |
|
|
255 | (3) |
|
|
258 | (5) |
|
Outputs augmented fusion (OAF) |
|
|
259 | (1) |
|
Optimal weighting measurement fusion (OWMF) |
|
|
259 | (1) |
|
On functional equivalence of OAF and OWMF |
|
|
260 | (2) |
|
On the decentralized architecture |
|
|
262 | (1) |
|
|
263 | (3) |
|
State-vector assimilation fusion (SVAF) |
|
|
263 | (1) |
|
Track-to-track fusion (TTF) |
|
|
264 | (1) |
|
On the decentralized architecture |
|
|
265 | (1) |
|
Hierarchical multisensor data fusion-trade-off between centralized and decentralized Architectures |
|
|
266 | (1) |
|
|
267 | (14) |
|
On functional equivalence of two measurement fusion methods |
|
|
267 | (4) |
|
On hierarchical multisensor data fusion |
|
|
271 | (10) |
|
Support vector neurofuzzy models |
|
|
281 | (26) |
|
|
281 | (1) |
|
|
282 | (4) |
|
|
284 | (1) |
|
Feature space and kernel functions |
|
|
284 | (2) |
|
Support vector regression |
|
|
286 | (3) |
|
Support vector neurofuzzy networks |
|
|
289 | (8) |
|
|
297 | (6) |
|
A comparison among neural network models |
|
|
303 | (1) |
|
|
304 | (3) |
References |
|
307 | (12) |
Index |
|
319 | |