Atnaujinkite slapukų nuostatas

El. knyga: Additive Manufacturing of Biopolymers: Handbook of Materials, Techniques, and Applications

Edited by (Assistant Professor, Department of Design, Production, and Management (DPM), University of Twente (UT), The Netherlands), Edited by (Full Professor, University of Lorraine, Metz, France)
  • Formatas: EPUB+DRM
  • Išleidimo metai: 21-Apr-2023
  • Leidėjas: Elsevier - Health Sciences Division
  • Kalba: eng
  • ISBN-13: 9780323951524
Kitos knygos pagal šią temą:
  • Formatas: EPUB+DRM
  • Išleidimo metai: 21-Apr-2023
  • Leidėjas: Elsevier - Health Sciences Division
  • Kalba: eng
  • ISBN-13: 9780323951524
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Additive Manufacturing of Biopolymers: Materials, Printing Techniques, and Applications describes various biopolymers that are currently used in additive manufacturing technologies and identifies the challenges/limitations in the materials and printing processes. The book provides basic knowledge and advanced details about 3D printing techniques and the applicable biopolymers as well as the latest updates on materials and techniques for 3D printing of biopolymers. Each chapter dedicates a section to future trends and perspectives in additive manufacturing of biopolymers from the use of biopolymers and new techniques point-of-view.
  • Provides an overview of biopolymer materials in terms of physicochemical properties that can be applied for the additive manufacturing process
  • Gives a comprehensive overview of applicable 3D printing techniques for biopolymers and their benefits and challenges
  • Explains in-depth chemical and physical properties of fabricated products for various applications
  • Offers a future vision in the development of both material and printing techniques in regard to biopolymers as well as new aspects in modeling and artificial intelligence issues
Contributors ix
Foreword xiii
1 Additive manufacturing of biopolymers
1(10)
Mehrshad Mehrpouya
Henri Vahabi
1 Introduction
1(1)
2 Biopolymers
1(2)
3 Biopolymers in additive manufacturing
3(2)
4 Classification of AM techniques for biopolymers
5(2)
5 Challenges and future trends
7(2)
References
9(2)
2 Additive manufacturing and 3D printing techniques for biopolymers
11(28)
Jia An
Kah Fai Leong
1 Introduction
11(2)
2 Vat photopolymerization
13(6)
3 Material jetting
19(4)
4 Material extrusion
23(2)
5 Other solid-based AM processes
25(3)
6 Bioprinting and hybrid biomanufacturing
28(2)
7 Conclusions and future perspectives
30(1)
References
31(8)
3 Biopolymers in additive manufacturing
39(26)
Ana C. Lemos de Morais
Vincent S.D. Voet
Rudy Folkersma
Katja Loos
1 Introduction
39(1)
2 Polydactic acid) (PLA)
40(2)
3 Polycaprolactone (PCL)
42(1)
4 Polyhydroxyalkanoates (PHAs)
43(3)
5 Proteins
46(6)
6 Polysaccharides
52(7)
7 Vegetable oils
59(1)
8 Conclusions and outlook
59(2)
References
61(4)
4 3D printing of biopolymer-based hydrogels
65(36)
Fengwei Xie
1 Introduction
65(1)
2 Biopolymers
65(2)
3 Polymer hydrogels
67(4)
4 Extrusion-based 3D printing of biopolymer hydrogels
71(14)
5 Inkjet 3D printing of biopolymer hydrogels
85(3)
6 Laser-mediated 3D printing
88(3)
7 Conclusion and future perspectives
91(3)
8 Data availability statement
94(1)
Acknowledgments
94(1)
References
94(7)
5 3D printing of fire-retardant biopolymers
101(34)
Marcos Batistella
Damien Rasselet
Jose-Marie Lopez-Cuesta
1 Introduction
101(2)
2 Mechanisms of action of flame retardants and fire tests
103(8)
3 Strategies of flame retardancy through 3D printing technologies
111(5)
4 Additive manufacturing of flame retarded PLA using fused filament fabrication
116(3)
5 3D printing of biobased polymer blends: a case study of flame retardant PLA/PA11 compositions processed via FFF technology
119(9)
6 Conclusions and perspectives
128(1)
References
129(6)
6 3D printing of biopolymer composites and nanocomposites
135(32)
Dibakar Mondal
Sanaz S. Hashemi
Elizabeth Diederichs
Haresh Patil
Thomas L. Willett
1 Introduction
135(2)
2 Additive manufacturing of biopolymers and their composites
137(8)
3 Benefits of 3D printed biopolymer nanocomposites
145(8)
4 Applications and case studies
153(4)
5 Perspectives on the future of AM with biopolymer composites
157(1)
6 Conclusion
158(1)
References
159(8)
7 3D printing of shape-switching biopolymers
167(24)
Wei Min Huang
1 Introduction
167(2)
2 Typical basic approaches for shape-switching
169(11)
3 Typical potential applications
180(7)
4 Conclusions
187(1)
Acknowledgments
187(1)
References
187(4)
8 4D printing of biopolymers
191(38)
Lubna Zeenat
Ali Zolfagharian
Mahdi Bodaghi
Falguni Pati
1 Introduction
191(7)
2 Structural design for 4D printing of biomaterials
198(1)
3 4D bioprinting
199(18)
4 Limitations and challenges
217(1)
5 Conclusion and future perspective
217(1)
References
218(11)
9 Post-processing methods for 3D printed biopolymers
229(36)
Gavin Keane
Andrew Healy
Declan Devine
1 Introduction
229(1)
2 Post-processing
230(4)
3 Post-process controls
234(1)
4 Support material
235(5)
5 Cleaning post-processes
240(1)
6 UV and thermal treatment
241(2)
7 Surface roughness as a result of AM processes
243(3)
8 Surface finishing
246(3)
9 Mechanical abrasive techniques
249(2)
10 Other methods of post-processing
251(5)
11 Conclusion and future perspectives
256(3)
References
259(6)
10 3D printed bio-based polymers and hydrogels for tissue engineering
265(38)
Esfandyar Askari
Mohsen Akbari
1 Introduction
265(1)
2 Technologies behind 3DBP
266(6)
3 Biomaterials for 3D (bio)printing
272(11)
4 Physiochemical properties and biological response of biopolymer
283(11)
5 Conclusion
294(1)
Acknowledgments
295(1)
References
295(8)
11 3D printed biopolymers for medical applications and devices
303(28)
Alessandro Zaccarelli
Giulia Remaggi
Lisa Elviri
1 Introduction
303(1)
2 3D printing techniques and biopolymers
304(7)
3 3D printed biopolymers for medical and pharmaceutical applications
311(10)
4 Regulation of 3D printed medical devices
321(2)
5 Conclusions and future perspectives
323(2)
References
325(6)
12 Potential applications of 3D and 4D printing of biopolymers
331(40)
Wei Long Ng
Wai Yee Yeong
1 Introduction
331(1)
2 Overview of 3D printing techniques for biopolymers
332(6)
3 Mechanisms of 4D printing
338(3)
4 Potential applications of 3D printing of biopolymers
341(10)
5 Potential applications of 4D printing of biopolymers
351(10)
6 Conclusion
361(1)
References
362(9)
13 3D printing with biopolymers: toward a circular economy
371(30)
Alysia Garmulewicz
Filippos Tourlomousis
Charlene Smith
Pilar Bolumburu
1 Introduction
371(3)
2 3D printing biopolymers
374(4)
3 Material innovation: 3D printing biopolymer performance
378(3)
4 Process: life-cycle analysis of biopolymers and 3D printing process
381(3)
5 Material supply chain: sourcing biopolymers for local production
384(4)
6 Case study: sourcing chitosan from waste
388(3)
7 Conclusion and future trends
391(2)
References
393(8)
Index 401
Mehrshad Mehrpouya earned his Ph.D. degree through a fellowship program from Sapienza University of Rome, Italy. He is currently an Assistant Professor in the Department of Design, Production, and Management (DPM) at the University of Twente (UT). His research interests are directed toward Advanced Manufacturing, 3D/4D Printing, Functional Materials, and modeling. Prof. Henri Vahabi received his Ph.D. in Materials Science from the University of Montpellier, France, in 2011. He is currently a Full Professor at the University of Lorraine, France. His research is focused on thermal degradation, flame retardancy of thermosets and thermoplastics, and the development of innovative flame-retardant systems. Prof. Vahabi has authored over 170 articles in ISI-indexed journals and has edited four books. Furthermore, he serves as a committee member of the "Fire Group" within the Chemical Society of France and holds the position of Associate Editor for the Polymers from Renewable Resources journal.