Atnaujinkite slapukų nuostatas

El. knyga: Additive Number Theory The Classical Bases

  • Formatas: PDF+DRM
  • Serija: Graduate Texts in Mathematics 164
  • Išleidimo metai: 14-Mar-2013
  • Leidėjas: Springer-Verlag New York Inc.
  • Kalba: eng
  • ISBN-13: 9781475738452
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Serija: Graduate Texts in Mathematics 164
  • Išleidimo metai: 14-Mar-2013
  • Leidėjas: Springer-Verlag New York Inc.
  • Kalba: eng
  • ISBN-13: 9781475738452
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

[ Hilbert's] style has not the terseness of many of our modem authors in mathematics, which is based on the assumption that printer's labor and paper are costly but the reader's effort and time are not. H. Weyl [ 143] The purpose of this book is to describe the classical problems in additive number theory and to introduce the circle method and the sieve method, which are the basic analytical and combinatorial tools used to attack these problems. This book is intended for students who want to lel Ill additive number theory, not for experts who already know it. For this reason, proofs include many "unnecessary" and "obvious" steps; this is by design. The archetypical theorem in additive number theory is due to Lagrange: Every nonnegative integer is the sum of four squares. In general, the set A of nonnegative integers is called an additive basis of order h if every nonnegative integer can be written as the sum of h not necessarily distinct elements of A. Lagrange 's theorem is the statement that the squares are a basis of order four. The set A is called a basis offinite order if A is a basis of order h for some positive integer h. Additive number theory is in large part the study of bases of finite order. The classical bases are the squares, cubes, and higher powers; the polygonal numbers; and the prime numbers. The classical questions associated with these bases are Waring's problem and the Goldbach conjecture.

Recenzijos

From the reviews:

This book provides a very thorough exposition of work to date on two classical problems in additive number theory . is aimed at students who have some background in number theory and a strong background in real analysis. A novel feature of the book, and one that makes it very easy to read, is that all the calculations are written out in full there are no steps left to the reader. The book also includes a large number of exercises . (Allen Stenger, The Mathematical Association of America, August, 2010)

Daugiau informacijos

Springer Book Archives
I Warings problem.- 1 Sums of polygons.- 2 Warings problem for cubes.-
3 The HilbertWaring theorem.- 4 Weyls inequality.- 5 The HardyLittlewood
asymptotic formula.- II The Goldbach conjecture.- 6 Elementary estimates for
primes.- 7 The ShnirelmanGoldbach theorem.- 8 Sums of three primes.- 9 The
linear sieve.- 10 Chens theorem.- III Appendix.- Arithmetic functions.- A.1
The ring of arithmetic functions.- A.2 Sums and integrals.- A.3
Multiplicative functions.- A.4 The divisor function.- A.6 The Möbius
function.- A.7 Ramanujan sums.- A.8 Infinite products.- A.9 Notes.- A.10
Exercises.