neleidžiama
neleidžiama
Skaitmeninių teisių valdymas (DRM)
Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).
Reikalinga programinė įranga
Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)
Norint skaityti šią el. knygą asmeniniame arba Mac kompiuteryje, Jums reikalinga Adobe Digital Editions (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas Adobe Reader, kurią tikriausiai jau turite savo kompiuteryje.)
Negalite skaityti šios el. knygos naudodami Amazon Kindle.
A Combined Deep Learning-Gradient Boosting Machine Framework for Fluid Intelligence Prediction.- Predicting Fluid Intelligence of Children using T1-weighted MR Images and a StackNet.- Deep Learning vs. Classical Machine Learning: A Comparison of Methods for Fluid Intelligence Prediction.- Surface-based Brain Morphometry for the Prediction of Fluid Intelligence in the Neurocognitive Prediction Challenge 2019.- Prediction of Fluid Intelligence From T1-Weighted Magnetic Resonance Images.- Ensemble of SVM, Random-Forest and the BSWiMS Method to Predict and Describe Structural Associations with Fluid Intelligence Scores from T1-Weighed MRI.- Predicting intelligence based on cortical WM/GM contrast, cortical thickness and volumetry.- Predict Fluid Intelligence of Adolescent Using Ensemble Learning.- Predicting Fluid Intelligence in Adolescent Brain MRI Data: An Ensemble Approach.- Predicting Fluid intelligence from structural MRI using Random Forest regression.- Nu Support Vector Machine in Prediction of Fluid Intelligence Using MRI Data.- An AutoML Approach for the Prediction of Fluid Intelligence From MRI-Derived Features.- Predicting Fluid Intelligence from MRI images with Encoder-decoder Regularization.- ABCD Neurocognitive Prediction Challenge 2019: Predicting individual residual fluid intelligence scores from cortical grey matter morphology.- Ensemble Modeling of Neurocognitive Performance Using MRI-derived Brain Structure Volumes.- ABCD Neurocognitive Prediction Challenge 2019: Predicting individual fluid intelligence scores from structural MRI using probabilistic segmentation and kernel ridge regression.- Predicting fluid intelligence using anatomical measures within functionally defined brain networks.- Sex differences in predicting fluid intelligence of adolescent brain from T1-weighted MRIs.- Ensemble of 3D CNN regressors with data fusion for fluid intelligence prediction.- Adolescent fluid intelligence prediction from regional brain volumes and cortical curvatures using BlockPC-XGBoost.- Cortical and Subcortical Contributions to Predicting Intelligence using 3D ConvNets.