Atnaujinkite slapukų nuostatas

El. knyga: Adsorption by Powders and Porous Solids: Principles, Methodology and Applications

, (Emeritus Director of Research, MADIREL Laboratory, Aix-Marseille University, France), (CCUS R&), , (Senior Professor, University of Provence, France; Research Team Leader, Centre National de la Recherche Scientifique, Marseilles, France)
  • Formatas: PDF+DRM
  • Išleidimo metai: 06-Sep-2013
  • Leidėjas: Academic Press Inc.(London) Ltd
  • Kalba: eng
  • ISBN-13: 9780080970363
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Išleidimo metai: 06-Sep-2013
  • Leidėjas: Academic Press Inc.(London) Ltd
  • Kalba: eng
  • ISBN-13: 9780080970363
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The declared objective of this book is to provide an introductory review of the various theoretical and practical aspects of adsorption by powders and porous solids with particular reference to materials of technological importance. The primary aim is to meet the needs of students and non-specialists who are new to surface science or who wish to use the advanced techniques now available for the determination of surface area, pore size and surface characterization. In addition, a critical account is given of recent work on the adsorptive properties of activated carbons, oxides, clays and zeolites.

Key Features

  • Provides a comprehensive treatment of adsorption at both the gas/solid interface and the liquid/solid interface
  • Includes chapters dealing with experimental methodology and the interpretation of adsorption data obtained with porous oxides, carbons and zeolites
  • Techniques capture the importance of heterogeneous catalysis, chemical engineering and the production of pigments, cements, agrochemicals, and pharmaceuticals

Recenzijos

"An introductory chapter summarizes relevance, history, and terminology of adsorption, including chemisorption vs. physisorption, and discusses energetics, molecular modeling, and diffusion. The following chapters treat thermodynamics at a gas/solid and solid/liquid interfaces, measurement and monitoring technique, isotherm theory and interpretation, mathematical modeling of adsorption processes, and use of adsorption to measure surface area and porosity of materials." --ProtoView.com, January 2014



Review of first edition: "A long-awaited but worthy successor to the book considered by many to be the bible of porous materials characterization: Gregg & Sing (2nd Edition, 1982). This collaboration between the Rouquerols and Ken Sing has created a detailed handbook covering not only important theoretical aspects, but copious experimental and application information too. Adsorption calorimetry gets more attention than before (not surprising given the Rouquerols' affiliation), as do new materials such as MCM's and new calculation models like DFT (Density Functional Theory) and Monte Carlo simulation. Importantly, there is a great deal of coverage given to adsorptives other than nitrogen (the most common but not necessarily the most appropriate in all cases). Hundreds of references are given for follow-up reading in areas of special interest. Anyone seeking a reliable, broad, yet highly informative coverage of adsorption methodology for porous materials characterization should invest in this title." --Worthy Successor by "thomasetc" (USA), June 2000, Amazon.com

Daugiau informacijos

Provides an introductory review of the various theoretical and practical aspects of adsorption by powders and porous solids with particular reference to advanced techniques and applications including activated carbons, separation of industrial gases and pollution control
Preface to the First Edition xiii
Preface to the Second Edition xv
List of Main Symbols
xvii
1 Introduction
1(24)
Francoise Rouquerol
Jean Rouquerol
Kenneth S.W. Sing
Guillaume Maurin
Philip Llewellyn
1.1 The Importance of Adsorption
1(1)
1.2 Historical Aspects
2(4)
1.3 General Definitions and Terminology
6(5)
1.4 Physisorption and Chemisorption
11(1)
1.5 Types of Adsorption Isotherms
11(4)
1.5.1 Classification of Gas Physisorption Isotherms
11(3)
1.5.2 Chemisorption of Gases
14(1)
1.5.3 Adsorption from Solution
14(1)
1.6 Energetics of Physisorption and Molecular Modelling
15(6)
1.7 Diffusion of Adsorbate
21(4)
References
22(3)
2 Thermodynamics of Adsorption at the Gas/Solid Interface
25(32)
Francoise Rouquerol
Jean Rouquerol
Kenneth S.W. Sing
2.1 Introduction
26(1)
2.2 Quantitative Expression of Adsorption of a Single gas
27(6)
2.2.1 Adsorption up to 1 bar
27(3)
2.2.2 Adsorption Above 1 bar and Much Higher
30(3)
2.3 Thermodynamic Potentials of Adsorption
33(5)
2.4 Thermodynamic Quantities Related to the Adsorbed States in the Gibbs Representation
38(2)
2.4.1 Definitions of the Molar Surface Excess Quantities
38(1)
2.4.2 Definitions of the Differential Surface Excess Quantities
39(1)
2.5 Thermodynamic Quantities Related to the Adsorption Process
40(5)
2.5.1 Definitions of the Differential Quantities of Adsorption
40(2)
2.5.2 Definitions of the Integral Molar Quantities of Adsorption
42(1)
2.5.3 Advantages and Limitations of Differential and Integral Molar Quantities of Adsorption
43(1)
2.5.4 Evaluation of Integral Molar Quantities of Adsorption
44(1)
2.6 Indirect Derivation of the Quantities of Adsorption from of a Series of Experimental Physisorption Isotherms: The Isosteric Method
45(3)
2.6.1 Differential Quantities of Adsorption
45(2)
2.6.2 Integral Molar Quantities of Adsorption
47(1)
2.7 Derivation of the Adsorption Quantities from Calorimetric Data
48(2)
2.7.1 Discontinuous Procedure
48(1)
2.7.2 Continuous Procedure
49(1)
2.8 Other Methods for the Determination of Differential Enthalpies of Adsorption
50(1)
2.8.1 Immersion Calorimetry
50(1)
2.8.2 The Chromatographic Method
51(1)
2.9 State Equations for High Pressure: Single Gases and Mixtures
51(6)
2.9.1 Case of Pure Gases
52(2)
2.9.2 Case of Gas Mixtures
54(1)
References
55(2)
3 Methodology of Gas Adsorption
57(48)
Jean Rouquerol
Francoise Rouquerol
3.1 Introduction
58(1)
3.2 Determination of the Surface Excess Amount (and Amount Adsorbed)
59(29)
3.2.1 Gas Adsorption Manometry (Measurement of Pressure Only)
59(8)
3.2.2 Gas Adsorption Gravimetry (Measurement of Mass and Pressure)
67(3)
3.2.3 Gas Adsorption with Gas Flow Control or Monitoring
70(5)
3.2.4 Gas Co-Adsorption
75(1)
3.2.5 Calibration Procedures and Corrections
76(10)
3.2.6 Other Critical Aspects
86(2)
3.3 Gas Adsorption Calorimetry
88(8)
3.3.1 Equipment Available
88(5)
3.3.2 Calorimetric Procedures
93(3)
3.4 Adsorbent Outgassing
96(4)
3.4.1 Aim of the Outgassing
96(1)
3.4.2 Conventional Vacuum Outgassing
96(2)
3.4.3 Controlled Vacuum Outgassing by CRTA
98(2)
3.4.4 Outgassing with a Carrier Gas
100(1)
3.5 Presentation of Experimental Data
100(5)
3.5.1 Units
101(1)
3.5.2 Experimental Conditions
101(1)
3.5.3 Surface Excess Amounts
101(1)
References
102(3)
4 Adsorption at the Liquid-Solid Interface: Thermodynamics and Methodology
105(54)
Jean Rouquerol
Francoise Rouquerol
4.1 Introduction
106(1)
4.2 Energetics of Immersion of Solid in Pure Liquid
107(26)
4.2.1 Thermodynamic Background
107(10)
4.2.2 Experimental Techniques of Immersion Microcalorimetry in Pure Liquid
117(6)
4.2.3 Applications of Pure Liquid Immersion Microcalorimetry
123(10)
4.3 Adsorption from Liquid Solution
133(26)
4.3.1 Quantitative Expression of the Amounts Adsorbed from a Binary Solution
134(6)
4.3.2 Quantitative Expression of the Energies Involved in Adsorption from Solution
140(2)
4.3.3 Basic Experimental Methods for the Study of Adsorption from Solution
142(7)
4.3.4 Applications of Adsorption from Solution
149(5)
References
154(5)
5 Classical Interpretation of Physisorption Isotherms at the Gas-Solid Interface
159(32)
Kenneth S.W. Sing
Francoise Rouquerol
Jean Rouquerol
5.1 Introduction
160(1)
5.2 Adsorption of a Pure Gas
160(23)
5.2.1 Equations Related to the Gibbs Adsorption Equation: Description of the Adsorbed Phase on Available Surface or in Micropores
160(4)
5.2.2 The Langmuir Theory
164(2)
5.2.3 Multilayer Adsorption
166(8)
5.2.4 The Dubinin-Stoeckli Theory: Filling of Micropores
174(3)
5.2.5 Type VI Isotherms: Phase Changes in Physisorbed Layers
177(4)
5.2.6 Empirical Isotherm Equations
181(2)
5.3 Adsorption of a Gas Mixture
183(3)
5.3.1 Extended Langmuir Model
183(2)
5.3.2 Ideal Adsorbed Solution Theory
185(1)
5.4 Conclusions
186(5)
References
187(4)
6 Modelling of Physisorption in Porous Solids
191(46)
Guillaume Maurin
6.1 Introduction
192(1)
6.2 Microscopic Description of the Porous Solids
193(1)
6.2.1 Crystalline Materials
193(1)
6.2.2 Non-Crystalline Materials
194(1)
6.3 Intermolecular Potential Function
194(7)
6.3.1 General Expression of the Pairwise Adsorbate/Adsorbent Interactions
194(3)
6.3.2 Common Strategy for `Simple' Adsorbate/Adsorbent System
197(2)
6.3.3 Cases of More `Complex' Adsorbate/Adsorbent System
199(2)
6.4 Characterization Computational Tools
201(4)
6.4.1 Introduction
201(1)
6.4.2 Accessible Specific Surface Area
202(2)
6.4.3 Pore Volume/PSD
204(1)
6.5 Modelling of Adsorption in Porous Solids
205(20)
6.5.1 GCMC Simulations
205(15)
6.5.2 Quantum Chemical Calculations
220(5)
6.6 Modelling of Diffusion in Porous Solids
225(6)
6.6.1 Basic Principles
225(1)
6.6.2 Single Component Diffusion
226(4)
6.6.3 Gas Mixture Diffusion
230(1)
6.7 Conclusions and Future Challenges
231(6)
References
233(4)
7 Assessment of Surface Area by Gas Adsorption
237(32)
Kenneth S.W. Sing
7.1 Introduction
237(2)
7.2 The BET Method
239(14)
7.2.1 Introduction
239(1)
7.2.2 The BET Plot
239(3)
7.2.3 Validity of the BET Monolayer Capacity
242(2)
7.2.4 The BET Area of Non-porous and Mesoporous Adsorbents
244(5)
7.2.5 The BET Area of Microporous Solids
249(2)
7.2.6 BET Areas - Some Applications
251(2)
7.3 Empirical Methods for Isotherm Analysis
253(5)
7.3.1 Standard Adsorption Isotherms
253(1)
7.3.2 The t-Method
254(1)
7.3.3 The αs-Method
255(3)
7.3.4 Comparison Plots
258(1)
7.4 The Fractal Approach
258(5)
7.5 Conclusions and Recommendations
263(6)
References
264(5)
8 Assessment of Mesoporosity
269(34)
Kenneth S.W. Sing
Francoise Rouquerol
Jean Rouquerol
Philip Llewellyn
8.1 Introduction
269(1)
8.2 Mesopore Volume, Porosity and Mean Pore Size
270(3)
8.2.1 Mesopore Volume
270(2)
8.2.2 Porosity
272(1)
8.2.3 Hydraulic Radius and Mean Pore Size
272(1)
8.3 Capillary Condensation and the Kelvin Equation
273(5)
8.3.1 Derivation of the Kelvin Equation
273(2)
8.3.2 Application of the Kelvin Equation
275(3)
8.4 Classical Computation of the Mesopore Size Distribution
278(6)
8.4.1 General Principles
278(1)
8.4.2 Computation Procedure
279(3)
8.4.3 The Multilayer Thickness
282(1)
8.4.4 Validity of the Kelvin Equation
282(2)
8.5 DFT Computation of the Mesopore Size Distribution
284(6)
8.5.1 General Principles
284(3)
8.5.2 Nitrogen Adsorption at 77 K
287(2)
8.5.3 Argon Adsorption at 87 K
289(1)
8.6 Hysteresis Loops
290(7)
8.7 Conclusions and Recommendations
297(6)
References
298(5)
9 Assessment of Microporosity
303(18)
Kenneth S.W. Sing
Francoise Rouquerol
Philip Llewellyn
Jean Rouquerol
9.1 Introduction
303(3)
9.2 Gas Physisorption Isotherm Analysis
306(8)
9.2.1 Empirical Methods
306(1)
9.2.2 Dubinin-Radushkevich-Stoeckli Methods
307(2)
9.2.3 The Horvath-Kawazoe (HK) Method
309(1)
9.2.4 Density Functional Theory
310(2)
9.2.5 Nonane Pre-adsorption
312(1)
9.2.6 Choice of Adsorptive and Temperature
313(1)
9.3 Microcalorimetric Methods
314(3)
9.3.1 Immersion Microcalorimetry
314(3)
9.3.2 Gas Adsorption Microcalorimetry
317(1)
9.4 Conclusions and Recommendations
317(4)
References
318(3)
10 Adsorption by Active Carbons
321(72)
Kenneth S.W. Sing
10.1 Introduction
322(1)
10.2 Active Carbons: Preparation, Properties and Applications
323(16)
10.2.1 Graphite
323(2)
10.2.2 Fullerenes and Nanotubes
325(3)
10.2.3 Carbon Blacks
328(2)
10.2.4 Activated Carbons
330(4)
10.2.5 Superactive Carbons
334(1)
10.2.6 Carbon Molecular Sieves
335(1)
10.2.7 ACFs and Cloth
336(1)
10.2.8 Monoliths
337(1)
10.2.9 Carbon Aerogels and OMCs
338(1)
10.3 Physisorption of Gases by Non-Porous Carbons
339(10)
10.3.1 Adsorption of Nitrogen and Carbon Dioxide on Carbon Blacks
339(6)
10.3.2 Adsorption of the Noble Gases
345(3)
10.3.3 Adsorption of Organic Vapours
348(1)
10.4 Physisorption of Gases by Porous Carbons
349(25)
10.4.1 Adsorption of Argon, Nitrogen and Carbon Dioxide
349(12)
10.4.2 Adsorption of Organic Vapours
361(5)
10.4.3 Adsorption of Water Vapour
366(6)
10.4.4 Adsorption of Helium
372(2)
10.5 Adsorption at the Carbon-Liquid Interface
374(4)
10.5.1 Immersion Calorimetry
374(2)
10.5.2 Adsorption from Solution
376(2)
10.6 LPH and Adsorbent Deformation
378(4)
10.6.1 Background
378(1)
10.6.2 Activated Entry
379(1)
10.6.3 Low-Pressure Hysteresis
380(1)
10.6.4 Expansion and Contraction
381(1)
10.7 Characterization of Active Carbons: Conclusions and Recommendations
382(11)
References
383(10)
11 Adsorption by Metal Oxides
393(74)
Jean Rouquerol
Kenneth S.W. Sing
Philip Llewellyn
11.1 Introduction
394(1)
11.2 Silica
394(21)
11.2.1 Pyrogenic and Crystalline Silicas
394(9)
11.2.2 Precipitated Silicas
403(2)
11.2.3 Silica Gels
405(10)
11.3 Aluminas: Structure, Texture and Physisorption
415(14)
11.3.1 Introduction to Activated Aluminas
415(1)
11.3.2 Starting Materials
416(3)
11.3.3 Thermal Decomposition of Hydrated Aluminas
419(6)
11.3.4 Resulting Activated Aluminas
425(4)
11.4 Titanium Dioxide Powders and Gels
429(9)
11.4.1 Titanium Dioxide Pigments
429(2)
11.4.2 Rutile: Surface Chemistry and Gas Adsorption
431(5)
11.4.3 The Porosity of Titania Gels
436(2)
11.5 Magnesium Oxide
438(6)
11.5.1 Physisorption of Non-polar Gases on Non-porous MgO
438(2)
11.5.2 Physisorption by Porous Forms of MgO
440(4)
11.6 Miscellaneous Oxides
444(13)
11.6.1 Chromium Oxide Gels
444(3)
11.6.2 Ferric Oxide: Thermal Decomposition of FeOOH
447(2)
11.6.3 Micro-crystalline Zinc Oxide
449(2)
11.6.4 Hydrous Zirconia Gels
451(2)
11.6.5 Beryllium Oxide
453(2)
11.6.6 Uranium Oxide
455(2)
11.7 Applications of Adsorbent Properties of Metal Oxides
457(10)
11.7.1 Applications as Gas Adsorbents and Desiccants
457(1)
11.7.2 Applications as Gas Sensors
458(1)
11.7.3 Applications as Catalysts and Catalyst Supports
458(1)
11.7.4 Applications as Pigments and Fillers
459(1)
11.7.5 Applications in Electronics
459(1)
References
460(7)
12 Adsorption by Clays, Pillared Clays, Zeolites and Aluminophosphates
467(62)
Jean Rouquerol
Philip Llewellyn
Kenneth Sing
12.1 Introduction
468(1)
12.2 Structure, Morphology and Adsorbent Properties of Layer Silicates
469(16)
12.2.1 Structure and Morphology of Layer Silicates
469(4)
12.2.2 Physisorption of Gases by Layer Silicates
473(12)
12.3 Pillared Clays: Structures and Properties
485(5)
12.3.1 Formation and Properties of Pillared Clays
485(2)
12.3.2 Physisorption of Gases by Pillared Clays
487(3)
12.4 Zeolites: Synthesis, Pore Structures and Molecular Sieve Properties
490(19)
12.4.1 Zeolite Structure, Synthesis and Morphology
490(4)
12.4.2 Adsorbent Properties of Molecular Sieve Zeolites
494(15)
12.5 Phosphate-Based Molecular Sieves: Background and Adsorbent Properties
509(9)
12.5.1 Background of Phosphate-Based Molecular Sieves
509(1)
12.5.2 Adsorbent Properties of Phosphate-Based Molecular Sieves
510(8)
12.6 Applications of Clays, Zeolites and Phosphate-Based Molecular Sieves
518(11)
12.6.1 Applications of Clays
518(1)
12.6.2 Applications of Zeolites
519(2)
12.6.3 Applications of Phosphate-Based Molecular Sieves
521(1)
References
522(7)
13 Adsorption by Ordered Mesoporous Materials
529(36)
Philip Llewellyn
13.1 Introduction
529(1)
13.2 Ordered Mesoporous Silicas
530(18)
13.2.1 The M41S Family
530(11)
13.2.2 The SBA Family
541(4)
13.2.3 Large Pore Ordered Mesoporous Silicas
545(3)
13.3 Effect of Surface Functionalisation on Adsorption Properties
548(9)
13.3.1 Incorporation of Metal Oxides into the Walls
548(5)
13.3.2 Occlusion of Metal Nanoparticles into the Pores
553(2)
13.3.3 Grafting of Organic Ligands on the Surface
555(2)
13.4 Ordered Organosilica Materials
557(1)
13.5 Replica Materials
557(3)
13.6 Concluding Remarks
560(5)
References
561(4)
14 Adsorption by Metal-Organic Frameworks
565(46)
Philip Llewellyn
Guillaume Maurin
Jean Rouquerol
14.1 Introduction
565(3)
14.2 Assessment and Meaning of the BET Area of MOFs
568(4)
14.2.1 Assessment of the BET Area of MOFs
568(3)
14.2.2 Meaning of the BET Area of MOFs
571(1)
14.3 Effect of Changing the Nature of the Organic Ligands
572(6)
14.3.1 Changing the Ligand Length
572(4)
14.3.2 Changing the Ligand Functionalisation
576(2)
14.4 Effect of Changing the Metal Centre
578(7)
14.5 Effect of Changing the Nature of Other Surface Sites
585(4)
14.6 Influence of Extra-Framework Species
589(3)
14.7 Special Case of the Flexibility of MOFs
592(9)
14.7.1 MIL-53(Al, Cr)
594(3)
14.7.2 MIL-53(Fe)
597(2)
14.7.3 Co(BDP)
599(2)
14.8 Towards Application Performances
601(10)
14.8.1 Gas Storage
602(1)
14.8.2 Gas Separation or Purification
602(1)
14.8.3 Catalysis
603(1)
14.8.4 Drug Delivery
603(1)
14.8.5 Sensors
604(1)
14.8.6 Comparing MOFs with Other Adsorbents
604(1)
References
605(6)
Index 611
Jean Rouquerol is the former Director of the CNRS Thermodynamics and Microcalorimetry Center in Marseilles, France and is now Emeritus Director of Research at the MADIREL Laboratory, Aix-Marseille University, France. He is a leading authority on adsorption thermodynamics, thermal analysis methodology and adsorption calorimetry. Franēoise Rouquerol leads a Research team at the Centre de Thermodynamique et de Microcalorimetrie and the Centre National de la Recherche Scientifique in Marseille, France. She is also a Senior Professor at the University of Provence, France. Philip Llewellyn was Team Leader at MADIREL Laboratory, France until 2020; he is now CCUS R&D Program Manager for TotalEnergie in Pau, France. He is a renowned scientist in gas adsorption and its applications. Guillaume Maurin is a Professor and Team Leader at the Institut Charles Gerhart of Montpellier, University of Montpellier, France. He is an internationally recognized in the field of molecular simulations applied to the adsorption in porous solids. Kenneth Sing (1925-2016) was an Emeritus Professor at Brunel University and Visiting Professor at Bristol University, both in the UK. He was an influential figure in colloid and surface science and was co-author of the well-known book Adsorption, Surface Area and Porosity.