Atnaujinkite slapukų nuostatas

El. knyga: Advanced Data Mining and Applications: 19th International Conference, ADMA 2023, Shenyang, China, August 21-23, 2023, Proceedings, Part I

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formatas: PDF+DRM
  • Serija: Lecture Notes in Computer Science 14176
  • Išleidimo metai: 04-Nov-2023
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783031466618
  • Formatas: PDF+DRM
  • Serija: Lecture Notes in Computer Science 14176
  • Išleidimo metai: 04-Nov-2023
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783031466618

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book constitutes the refereed proceedings of the 19th International Conference on Advanced Data Mining and Applications, ADMA 2023, held in Shenyang, China, during August 21–23, 2023.

The 216 full papers included in this book were carefully reviewed and selected from 503 submissions. They were organized in topical sections as follows: Data mining foundations, Grand challenges of data mining, Parallel and distributed data mining algorithms, Mining on data streams, Graph mining and Spatial data mining.
Time Series.- An Adaptive Data-Driven Imputation Model for Incomplete
Event Series.- From Time Series to Multi-Modality: Classifying Multivariate
Time Series via Both 1D and 2D Representations.- Exploring the Effectiveness
of Positional Embedding on Transformer-based Architectures for Multivariate
Time Series Classification.- Modeling of Repeated Measures for Time-to-Event
Prediction.- A Method for Identifying the Timeliness of Manufacturing Data
Based on Weighted Timeliness Graph.- STAD: Multivariate Time Series Anomaly
Detection Based on Spatio-temporal Relationship.- Recommendation I.- Refined
Node Type Graph Convolutional Network for Recommendation.- Multi-level Noise
Filtering and Preference Propagation Enhanced Knowledge Graph
Recommendation.- Enhancing Knowledge-aware Recommendation with Contrastive
Learning.- Knowledge-Rich Influence Propagation Recommendation Algorithm
Based on Graph Attention Networks.- A Novel Variational Autoencoder with
Multi-Position Latent Self-Attention and Actor-Critic for
Recommendation.- Fair Re-ranking Recommendation Based on Debiased Multi-Graph
Representations.- Information Extraction.- FastNER: Speeding Up Inferences
for Named Entity Recognition Tasks.- CPMFA: A Character Pair-Based Method for
Chinese Nested Named Entity Recognition.- STMC-GCN: A Span Tagging
Multi-Channel Graph Convolutional Network for Aspect Sentiment Triplet
Extraction.- Exploring the Design Space of Unsupervised Blocking with
Pre-trained Language Models in Entity Resolution.- Joint Modeling of Local
and Global Semantics for Contrastive Entity Disambiguation.- Fine-grained
Review Analysis using BERT with Attention: A Categorical and Rating-based
Approach.- Emotional Analysis.- Discovery of Emotion Implicit Causes in
Products based on Commonsense Reasoning.- Multi-modal Multi-emotion Emotional
Support Conversation.- Exploiting Pseudo Future Contexts for Emotion
Recognition in Conversations.- Generating Enlightened Suggestions based on
Mental State Evolution for Emotional Support Conversation.- Deep One-Class
Fine-Tuning for Imbalanced Short Text Classification in Transfer
Learning.- EmoKnow: Emotion- and Knowledge-oriented Model for COVID-19 Fake
News Detection.- Popular Songs: The Sentiment Surrounding the
Conversation.- Market Sentiment Analysis based on Social Media and Trading
Volume for Asset Price Movement Prediction.- Data Mining.- Efficient mining
of high utility co-location patterns based on a query strategy.- Point-level
Label-free Segmentation Framework for 3D Point Cloud Semantic
Mining.- CD-BNN: Causal Discovery with Bayesian Neural Network.- A
Preference-based Indicator Selection Hyper-heuristic for Optimization
Problems.- An Elastic Scalable Grouping for Stateful Operators in Stream
Computing Systems.- Incremental natural gradient boosting for probabilistic
regression.- Discovering Skyline Periodic Itemset Patterns in Transaction
Sequences.- Double-optimized CS-BP Anomaly Prediction for Control Operation
Data.- Bridging the Interpretability Gap in Coupled Neural Dynamical
Models.- Multidimensional Adaptative kNN Over Tracking Outliers
(Makoto).- Traffic.- MANet: An End-to-End Multiple Attention Network for
Extracting Roads around EHV Transmission Lines from High-Resolution Remote
Sensing Images.- Deep Reinforcement Learning for Solving the Trip Planning
Query.- MDCN: Multi-Scale Dilated Convolutional Enhanced Residual Network for
Traffic Sign Detection.- Identifying Critical Congested Roads based on
Traffic Flow-Aware Road Network Embedding.- A Cross-Region-based Framework
for Supporting Car-Sharing.- Attention-based Spatial-Temporal Graph
Convolutional Recurrent Networks for Traffic Forecasting.- Transformer Based
Driving Behavior Safety Prediction For New Energy Vehicles.- Graph
Convolution Recurrent Denoising Diffusion Model for Multivariate
Probabilistic Temporal Forecasting.- A Bottom-Up Sampling Strategy for
Reconstructing Geospatial Data from Ultra Sparse Inputs.- Recommendation
II.- Feature Representation Enhancing by Context Sensitive Information in CTR
Prediction.- ProtoMix: Learnable Data Augmentation on Few-shot Features with
Vector Quantization in CTR Prediction.- When Alignment Makes a Difference: A
Content-Based Variational Model for Cold-Start CTR
Prediction.- Dual-Ganularity Contrastive Learning for Session-based
Recommendation.- Efficient Graph Collaborative Filtering with Multi-layer
Output-enhanced Contrastive Learning.- Influence Maximization with Tag
Revisited: Exploiting the Bi-Submodularity of the Tag-Based Influence
Function.- Multi-Interest Aware Graph Convolution Network for Social
Recommendation.- Enhancing MultimediaRecommendation through Item-Item
Semantic Denoising and Global Preference Awareness.- Resident-based Store
Recommendation Model for Community Commercial Planning.c