About the Author |
|
xi | |
Preface |
|
xiii | |
Acknowledgements |
|
xv | |
|
|
1 | (8) |
|
|
1 | (1) |
|
1.2 Main structural design problems |
|
|
2 | (1) |
|
1.3 Introduction of finite element method |
|
|
3 | (5) |
|
1.3.1 Finite element methods |
|
|
3 | (1) |
|
1.3.2 Finite element types |
|
|
4 | (4) |
|
|
8 | (1) |
|
|
8 | (1) |
|
2 Major modelling programs and building information modelling (BIM) |
|
|
9 | (17) |
|
2.1 Fundamentals of analysis programs |
|
|
9 | (1) |
|
2.1.1 Selection of correct analysis packages |
|
|
9 | (1) |
|
2.1.2 Basic analysis procedures |
|
|
10 | (1) |
|
2.2 Building information modelling (BIM) |
|
|
10 | (1) |
|
2.3 Main analysis programs in current design practice |
|
|
11 | (2) |
|
|
11 | (1) |
|
|
12 | (1) |
|
|
12 | (1) |
|
|
12 | (1) |
|
2.3.5 Autodesk robot structural analysis professional |
|
|
13 | (1) |
|
|
13 | (1) |
|
2.4 Major draughting program |
|
|
13 | (2) |
|
|
14 | (1) |
|
|
14 | (1) |
|
|
14 | (1) |
|
2.4.4 Bentley MicroStation |
|
|
15 | (1) |
|
2.5 Method to model complex geometry |
|
|
15 | (11) |
|
2.5.1 Import geometry into SAP2000 |
|
|
16 | (3) |
|
2.5.2 Import geometry into ETABS |
|
|
19 | (2) |
|
2.5.3 Import geometry into Abaqus® |
|
|
21 | (4) |
|
2.5.4 Set up model with Revit |
|
|
25 | (1) |
|
|
25 | (1) |
|
|
25 | (1) |
|
|
26 | (35) |
|
|
26 | (1) |
|
3.2 Structural systems of tall buildings |
|
|
26 | (1) |
|
3.2.1 Gravity load resisting systems |
|
|
26 | (1) |
|
3.2.2 Lateral load resisting systems |
|
|
27 | (1) |
|
3.3 Lateral resisting systems and modelling examples |
|
|
27 | (18) |
|
3.3.1 Moment resisting frames (MRF) |
|
|
27 | (1) |
|
|
28 | (1) |
|
|
28 | (1) |
|
3.3.4 Outrigger structures |
|
|
29 | (1) |
|
3.3.5 Tube structures and modelling example of the Willis Towers |
|
|
30 | (4) |
|
3.3.6 Diagrid structures and modelling example of the Gherkin |
|
|
34 | (11) |
|
3.3.7 Super frame (mega frame) structures and modelling example |
|
|
45 | (1) |
|
3.4 Modelling example of the Burj Khalifa |
|
|
45 | (10) |
|
|
49 | (5) |
|
3.4.2 Analysis and result |
|
|
54 | (1) |
|
3.5 Modelling example of Taipei 101 with tuned mass damper (TMD) |
|
|
55 | (5) |
|
|
55 | (5) |
|
3.5.2 TMD modelling result |
|
|
60 | (1) |
|
|
60 | (1) |
|
|
60 | (1) |
|
4 Earthquake analysis of buildings |
|
|
61 | (37) |
|
|
61 | (1) |
|
4.2 Basic earthquake knowledge |
|
|
61 | (1) |
|
4.2.1 Categories of earthquake waves |
|
|
61 | (1) |
|
4.2.2 Measurement of earthquake |
|
|
62 | (1) |
|
4.3 Basic dynamic knowledge |
|
|
62 | (8) |
|
|
62 | (1) |
|
4.3.2 SDOF under earthquake |
|
|
63 | (3) |
|
4.3.3 MDOF under earthquake |
|
|
66 | (1) |
|
|
67 | (1) |
|
|
68 | (1) |
|
4.3.6 Response spectrum from Eurocode 8 |
|
|
68 | (1) |
|
4.3.7 Ductility and modified response spectrum |
|
|
69 | (1) |
|
4.4 Modelling example of the response spectrum analysis using SAP20001 |
|
|
70 | (11) |
|
4.5 Time history analysis and modelling example using SAP2000 |
|
|
81 | (6) |
|
4.5.1 Fundamentals of time history analysis |
|
|
81 | (1) |
|
4.5.2 Modelling example of time history analysis using SAP2000 |
|
|
81 | (6) |
|
4.6 Push-over analysis and modelling example using SAP2000 |
|
|
87 | (11) |
|
|
87 | (1) |
|
4.6.2 Modelling example of push-over analysis using SAP2000 |
|
|
88 | (9) |
|
|
97 | (1) |
|
Codes and building regulations |
|
|
97 | (1) |
|
|
97 | (1) |
|
5 Progressive collapse analysis |
|
|
98 | (15) |
|
|
98 | (1) |
|
5.2 Design guidance for progressive collapse analysis |
|
|
98 | (1) |
|
|
99 | (1) |
|
5.4 Design and analysis method |
|
|
99 | (5) |
|
5.4.1 Indirect design method |
|
|
99 | (1) |
|
5.4.2 Direct design method |
|
|
100 | (1) |
|
5.4.3 Selection of design method |
|
|
101 | (1) |
|
5.4.4 Structural analysis procedures and acceptance criteria |
|
|
101 | (3) |
|
5.5 Modelling example of progressive collapse analysis using SAP2000 -- nonlinear dynamic procedure |
|
|
104 | (9) |
|
|
112 | (1) |
|
Codes and building regulations |
|
|
112 | (1) |
|
6 Blast and impact loading |
|
|
113 | (27) |
|
|
113 | (1) |
|
6.2 Fundamentals of blast loading |
|
|
113 | (4) |
|
6.2.1 Basic design principles |
|
|
113 | (1) |
|
6.2.2 Major blast attack regimes |
|
|
114 | (1) |
|
6.2.3 Blast load characteristics |
|
|
114 | (1) |
|
6.2.4 Principle of the scaling law |
|
|
114 | (1) |
|
6.2.5 Simplification of the blast load profile |
|
|
115 | (1) |
|
6.2.6 Material behaviours at high strain-rate |
|
|
116 | (1) |
|
6.2.7 Dynamic response and pressure impulse diagrams |
|
|
116 | (1) |
|
6.3 Introduction of SPH theory |
|
|
117 | (2) |
|
6.4 Modelling examples of impact loading analysis using the coupled SPH and FEA method in Abaqus® |
|
|
119 | (21) |
|
6.4.1 Modelling technique |
|
|
119 | (1) |
|
|
120 | (19) |
|
|
139 | (1) |
|
Codes and building regulations |
|
|
139 | (1) |
|
|
139 | (1) |
|
7 Structural fire analysis |
|
|
140 | (27) |
|
|
140 | (1) |
|
7.2 Basic knowledge of heat transfer |
|
|
140 | (1) |
|
7.3 Fire development process |
|
|
141 | (1) |
|
7.4 Fire protection method |
|
|
142 | (1) |
|
7.4.1 Active system control |
|
|
142 | (1) |
|
7.4.2 Passive system control |
|
|
143 | (1) |
|
7.5 Fire temperature curve |
|
|
143 | (2) |
|
7.6 Determination of the thermal response of structural members |
|
|
145 | (1) |
|
7.7 Structural lire design |
|
|
145 | (1) |
|
7.7.1 Fire safety design objectives |
|
|
145 | (1) |
|
7.7.2 File safety design framework |
|
|
146 | (1) |
|
7.8 Major modelling techniques for structural fire analysis |
|
|
146 | (1) |
|
|
146 | (1) |
|
|
146 | (1) |
|
7.8.3 Finite element method using the fire temperature curve |
|
|
147 | (1) |
|
7.9 Modelling example of heat transfer analysis using Abaqus® |
|
|
147 | (20) |
|
|
147 | (5) |
|
7.9.2 Define the heat transferring parameters |
|
|
152 | (12) |
|
|
164 | (1) |
|
|
164 | (1) |
|
7.9.5 Other type of slabs |
|
|
164 | (2) |
|
|
166 | (1) |
|
Building codes and regulations |
|
|
166 | (1) |
|
|
167 | (30) |
|
|
167 | (1) |
|
8.2 Type of space structures |
|
|
167 | (5) |
|
|
167 | (1) |
|
8.2.2 Latticed shell structures |
|
|
168 | (2) |
|
|
170 | (2) |
|
|
172 | (1) |
|
|
172 | (1) |
|
|
173 | (1) |
|
|
173 | (1) |
|
8.4 Stability analysis of space structures |
|
|
173 | (3) |
|
8.4.1 Member buckling analysis |
|
|
173 | (1) |
|
8.4.2 Local buckling analysis |
|
|
174 | (1) |
|
8.4.3 Global buckling analysis |
|
|
175 | (1) |
|
8.5 Modelling example of a single layer dome using SAP2000 (including global buckling analysis |
|
|
176 | (9) |
|
8.5.1 Set up a 3D model in AutoCAD |
|
|
177 | (1) |
|
8.5.2 Import the 3D model into SAP2000 |
|
|
177 | (1) |
|
8.5.3 Define load pattern |
|
|
177 | (1) |
|
8.5.4 Define load cases (including global buckling analysis) |
|
|
177 | (3) |
|
8.5.5 Run global buckling analysis |
|
|
180 | (3) |
|
8.5.6 Define load combination |
|
|
183 | (1) |
|
8.5.7 Analysis and result |
|
|
183 | (2) |
|
|
185 | (1) |
|
8.6 Nonlinear geometric analysis of Tensegrity structures |
|
|
185 | (2) |
|
8.6.1 The initial geometrical equilibrium (form finding) |
|
|
185 | (1) |
|
|
186 | (1) |
|
8.7 Modelling example of Tensigrity dome using SAP2000 (nonlinear geometrical analysis |
|
|
187 | (10) |
|
8.7.2 Import 3D model into SAP2000 |
|
|
187 | (1) |
|
8.7.3 Nonlinear geometric analysis of Tensegrity using SAP2000 |
|
|
188 | (2) |
|
8.7.4 Define the prestressed force |
|
|
190 | (1) |
|
8.7.5 Form finding (determination of initial geometrical equilibrium |
|
|
191 | (4) |
|
|
195 | (1) |
|
|
195 | (1) |
|
Building codes and regulations |
|
|
196 | (1) |
|
|
196 | (1) |
|
|
197 | (25) |
|
|
197 | (1) |
|
9.2 Structural types of bridges |
|
|
197 | (4) |
|
9.2.1 Beam bridges and truss bridges |
|
|
197 | (1) |
|
|
198 | (1) |
|
|
198 | (1) |
|
|
198 | (2) |
|
9.2.5 Cable-stayed bridges |
|
|
200 | (1) |
|
9.3 Structural design of bridge structure |
|
|
201 | (1) |
|
|
201 | (2) |
|
|
202 | (1) |
|
|
202 | (1) |
|
9.4.3 Seismic effects on bridges |
|
|
202 | (1) |
|
9.4.4 Wind effects on bridges |
|
|
203 | (1) |
|
9.4.5 Accidental actions (impact loads) |
|
|
203 | (1) |
|
9.5 Modelling example of Milau Viaduct using CSI Bridge |
|
|
203 | (5) |
|
|
203 | (5) |
|
|
208 | (5) |
|
9.6.1 Define the vehicle loading |
|
|
209 | (2) |
|
9.6.2 Analysis and result |
|
|
211 | (2) |
|
9.7 Modelling example of Forth Bridge using SAP2000 |
|
|
213 | (9) |
|
|
221 | (1) |
|
|
221 | (1) |
|
10 Foot-induced vibration |
|
|
222 | (31) |
|
10.1 Introduction to vibration problems in structural design |
|
|
222 | (1) |
|
10.2 Characteristics of foot-induced dynamic loads |
|
|
222 | (2) |
|
|
222 | (1) |
|
|
223 | (1) |
|
|
223 | (1) |
|
10.2.4 Loads induced by groups and crowds |
|
|
224 | (1) |
|
|
224 | (3) |
|
|
225 | (1) |
|
|
225 | (2) |
|
10.4 Loading representation of foot-induced vibration |
|
|
227 | (2) |
|
10.4.1 Time-domain solution (time history analysis) |
|
|
227 | (1) |
|
10.4.2 Frequency-based solutions (random analysis) |
|
|
228 | (1) |
|
10.5 Modelling example of vibration analysis for the Millennium Bridge using SAP2000 (time-based method) |
|
|
229 | (9) |
|
|
230 | (1) |
|
10.5.2 Simulation of pedestrian loads |
|
|
230 | (3) |
|
10.5.3 Analysis of Millennium Bridge before retrofit |
|
|
233 | (2) |
|
10.5.4 Analysis of the Millennium Bridge after retrofit |
|
|
235 | (3) |
|
10.6 Modelling example of vibration analysis of hospital floor using Abaqus® (frequency-based method) |
|
|
238 | (15) |
|
10.6.1 Prototype structure |
|
|
238 | (1) |
|
10.6.2 Modelling technique |
|
|
239 | (1) |
|
10.6.3 Analysis procedures and major Abaqus® commands used in the simulation |
|
|
240 | (5) |
|
10.6.4 Analysis result interpretation |
|
|
245 | (6) |
|
|
251 | (1) |
|
Codes and building regulations |
|
|
251 | (1) |
|
|
252 | (1) |
Index |
|
253 | |