Preface |
|
v | |
|
|
1 | (16) |
|
1.1 Thousand-core On-chip |
|
|
1 | (4) |
|
1.2 State-of-the-Art Many-core Microprocessors |
|
|
5 | (2) |
|
1.3 Memory-logic Integration |
|
|
7 | (8) |
|
1.3.1 2D Integration Challenges |
|
|
7 | (5) |
|
|
7 | (1) |
|
|
8 | (2) |
|
1.3.1.3 I/O Circuit Design |
|
|
|
|
10 | (1) |
|
1.3.1.5 Thermal Management |
|
|
10 | (1) |
|
|
11 | (1) |
|
|
11 | (1) |
|
|
12 | (2) |
|
|
14 | (1) |
|
1.4 Organization of the Book |
|
|
15 | (2) |
Part 1 Device Modeling |
|
17 | (82) |
|
|
19 | (52) |
|
|
19 | (2) |
|
2.2 TSV Structure and Fabrication |
|
|
21 | (16) |
|
|
21 | (4) |
|
2.2.1.1 Wafer Layout and Mask Design |
|
|
21 | (1) |
|
2.2.1.2 Electrical Structure Design |
|
|
22 | (2) |
|
2.2.1.3 Thermal Structure Design |
|
|
24 | (1) |
|
|
25 | (1) |
|
2.2.2 Fabrication Process |
|
|
25 | (5) |
|
2.2.2.1 Electrical Structure Fabrication Process |
|
|
25 | (3) |
|
2.2.2.2 Thermal Structure Fabrication Process |
|
|
28 | (2) |
|
2.2.3 Process Control and Optimization |
|
|
30 | (7) |
|
|
30 | (1) |
|
2.2.3.2 Dielectric Liner Deposition |
|
|
31 | (2) |
|
2.2.3.3 Ta Barrier/Cu Seed Layer Deposition and Cu ECP |
|
|
33 | (2) |
|
|
35 | (2) |
|
2.3 TSV Electrical Characterization |
|
|
37 | (17) |
|
|
37 | (1) |
|
2.3.2 Conventional PETEOS Oxide Liner |
|
|
38 | (4) |
|
2.3.2.1 Electrical CV Measurement |
|
|
38 | (4) |
|
2.3.2.2 Electrical IV Measurement |
|
|
42 | (1) |
|
2.3.3 Black Diamond Low-k Liner |
|
|
42 | (6) |
|
2.3.3.1 Electrical CV Measurement |
|
|
44 | (2) |
|
2.3.3.2 Electrical IV Measurement |
|
|
46 | (2) |
|
2.3.4 Al2O3/Oxide Bi-layer Liner |
|
|
48 | (6) |
|
2.3.4.1 Electrical CV Measurement |
|
|
48 | (5) |
|
2.3.4.2 Electrical IV Measurement |
|
|
53 | (1) |
|
2.4 TSV Thermal Characterization Results |
|
|
54 | (10) |
|
|
54 | (1) |
|
2.4.2 Cu-TSV Thermal Modeling |
|
|
55 | (1) |
|
2.4.3 Cu-TSV Induced Stress Modeling |
|
|
56 | (5) |
|
2.4.4 Cu-TSV Induced Stress Measurement by Micro-Raman Analysis |
|
|
61 | (3) |
|
2.5 TSI Structure and Fabrication |
|
|
64 | (5) |
|
|
65 | (3) |
|
2.5.2 Fabrication Process |
|
|
68 | (1) |
|
|
69 | (2) |
|
|
71 | (28) |
|
|
71 | (1) |
|
3.2 Nonlinear MOSCAP Model |
|
|
72 | (3) |
|
|
75 | (16) |
|
|
75 | (2) |
|
|
77 | (5) |
|
|
82 | (4) |
|
|
86 | (4) |
|
3.3.4.1 Electrical-Thermal Coupled Delay Model |
|
|
86 | (1) |
|
3.3.4.2 Electrical-Mechanical Coupled Delay Model |
|
|
87 | (1) |
|
3.3.4.3 Electrical-Thermal-Mechanical Coupled Delay Model |
|
|
88 | (2) |
|
|
90 | (1) |
|
|
91 | (6) |
|
|
92 | (2) |
|
|
92 | (1) |
|
|
93 | (1) |
|
|
94 | (11) |
|
3.4.2.1 TSV and TSI Comparison |
|
|
95 | (1) |
|
3.4.2.2 Energy-efficiency Analysis |
|
|
95 | (2) |
|
|
97 | (2) |
Part 2 Physical Design |
|
99 | (56) |
|
|
101 | (12) |
|
|
101 | (2) |
|
4.2 Power and Thermal Integrity |
|
|
103 | (2) |
|
|
105 | (6) |
|
4.3.1 Complexity Compression |
|
|
106 | (3) |
|
4.3.1.1 Complexity Compression of States |
|
|
106 | (1) |
|
4.3.1.2 Complexity Compression of I/Os |
|
|
107 | (2) |
|
|
109 | (2) |
|
|
111 | (2) |
|
|
113 | (26) |
|
|
113 | (1) |
|
|
114 | (8) |
|
5.2.1 Problem Formulation |
|
|
114 | (2) |
|
5.2.2 Sensitivity based TSV Allocation |
|
|
116 | (6) |
|
|
122 | (15) |
|
5.3.1 Problem Formulation |
|
|
123 | (1) |
|
5.3.2 Sensitivity based TSV Allocation |
|
|
123 | (17) |
|
5.3.2.1 Reduction of Thermal Gradient |
|
|
124 | (2) |
|
5.3.2.2 Reduction of Stress Gradient |
|
|
126 | (2) |
|
5.3.2.3 Clock-skew Reduction |
|
|
128 | (9) |
|
|
137 | (2) |
|
|
139 | (16) |
|
|
139 | (1) |
|
|
140 | (3) |
|
6.2.1 System Architecture |
|
|
140 | (2) |
|
6.2.2 Problem Formulation |
|
|
142 | (1) |
|
6.3 Compressive Sensing and Recovery of Testing Data |
|
|
143 | (4) |
|
6.3.1 Sparsity of Test Data |
|
|
143 | (2) |
|
6.3.2 Lossless Compression and Recovery |
|
|
145 | (1) |
|
|
146 | (1) |
|
|
147 | (6) |
|
|
147 | (2) |
|
|
149 | (3) |
|
|
152 | (1) |
|
|
153 | (2) |
Part 3 Thermal Management |
|
155 | (40) |
|
7 Power and Thermal System Model |
|
|
157 | (18) |
|
|
157 | (2) |
|
7.2 3D System Power Model |
|
|
159 | (5) |
|
7.2.1 Core and DRAM Power Model |
|
|
159 | (1) |
|
7.2.2 System Power Breakdown |
|
|
160 | (4) |
|
7.2.2.1 Thermal Runaway Failure |
|
|
162 | (2) |
|
7.3 3D System Thermal Model |
|
|
164 | (7) |
|
7.3.1 Microfluidic Channel Thermal Model |
|
|
166 | (1) |
|
7.3.2 Steady State Thermal Analysis |
|
|
167 | (4) |
|
7.3.2.1 Software Implementation |
|
|
168 | (1) |
|
7.3.2.2 Validation of Proposed Model |
|
|
169 | (2) |
|
7.4 3D Cyber-physical System |
|
|
171 | (2) |
|
7.4.1 System Architecture |
|
|
171 | (1) |
|
7.4.2 Problem Formulation |
|
|
172 | (1) |
|
|
173 | (2) |
|
8 Microfluidic Based Cooling |
|
|
175 | (20) |
|
|
175 | (1) |
|
8.2 3D Cyber-physical Thermal Management |
|
|
176 | (17) |
|
8.2.1 Real-time Temperature Demand Estimation |
|
|
179 | (1) |
|
8.2.2 Prediction and Correction |
|
|
179 | (3) |
|
8.2.3 Clustering of Microchannels |
|
|
182 | (7) |
|
8.2.4 Allocation of Flow Rates |
|
|
189 | (2) |
|
8.2.5 Minimization of Cooling Effort |
|
|
191 | (2) |
|
|
193 | (2) |
Part 4 I/O Management |
|
195 | (154) |
|
|
197 | (32) |
|
|
197 | (2) |
|
9.2 3D Power I/O Management |
|
|
199 | (6) |
|
9.2.1 System Architecture |
|
|
200 | (4) |
|
9.2.2 Problem Formulation |
|
|
204 | (1) |
|
9.3 ILP based Optimization |
|
|
205 | (1) |
|
9.4 Space-time Multiplexing |
|
|
206 | (21) |
|
9.4.1 Adaptive Clustering |
|
|
207 | (14) |
|
9.4.1.1 Power-signature Extraction |
|
|
207 | (3) |
|
9.4.1.2 Space Multiplexing: Grouping |
|
|
210 | (1) |
|
9.4.1.3 Time Multiplexing: Subgrouping |
|
|
211 | (1) |
|
9.4.1.4 Allocation of Power Converters |
|
|
212 | (9) |
|
9.4.2 Scheduling of Workloads |
|
|
221 | (10) |
|
9.4.2.1 Slack Calculation |
|
|
222 | (2) |
|
9.4.2.2 Scheduling of Workloads |
|
|
224 | (3) |
|
|
227 | (2) |
|
|
229 | (34) |
|
|
229 | (2) |
|
10.2 3D Bandwidth and Voltage-swing Management |
|
|
231 | (4) |
|
10.2.1 System Architecture |
|
|
231 | (1) |
|
10.2.2 Problem Formulation |
|
|
232 | (3) |
|
10.3 Signal I/O Bandwidth Management |
|
|
235 | (10) |
|
10.3.1 Memory-access Data-pattern |
|
|
235 | (3) |
|
10.3.1.1 LLC MPKI Pattern |
|
|
235 | (2) |
|
10.3.1.2 Quality of Service |
|
|
237 | (1) |
|
10.3.2 Reconfigurable Memory Controller |
|
|
238 | (7) |
|
10.3.2.1 Space Multiplexing: Channel Allocation |
|
|
238 | (1) |
|
10.3.2.2 Time Multiplexing: Time-slot Allocation |
|
|
238 | (1) |
|
10.3.2.3 Space-Time Multiplexing based I/O Bandwidth Management |
|
|
239 | (6) |
|
10.4 Signal I/O Voltage-swing Management |
|
|
245 | (16) |
|
10.4.1 Reinforcement Q-learning |
|
|
248 | (17) |
|
10.4.1.1 Q-learning Theory |
|
|
248 | (2) |
|
|
250 | (1) |
|
10.4.1.3 Adaptive I/O Voltage-swing Tuning |
|
|
251 | (3) |
|
10.4.1.4 Accelerated Q-learning |
|
|
254 | (5) |
|
10.4.1.5 Comparison of Adaptive Tuning by Conventional and Accelerated Q-learning |
|
|
259 | (2) |
|
|
261 | (2) |
|
|
263 | (18) |
|
|
263 | (2) |
|
|
265 | (7) |
|
11.2.1 SOI MEMS Accelerometer |
|
|
265 | (3) |
|
11.2.2 CMOS Readout Circuit |
|
|
268 | (4) |
|
11.3 Testing and Measurement |
|
|
272 | (6) |
|
|
273 | (4) |
|
11.3.2 Bonding Reliability |
|
|
277 | (1) |
|
11.3.3 Measurement Results |
|
|
277 | (1) |
|
|
278 | (3) |
|
|
281 | (24) |
|
|
281 | (2) |
|
12.2 2.5D I/O Buffer Design |
|
|
283 | (8) |
|
|
284 | (2) |
|
|
286 | (1) |
|
12.2.3 Simulation Results |
|
|
287 | (4) |
|
12.2.3.1 EM Simulation of TSV and TSI I/O |
|
|
290 | (1) |
|
|
291 | (7) |
|
12.3.1 Transmitter and Receiver |
|
|
293 | (3) |
|
12.3.1.1 Error Correcting Code |
|
|
295 | (1) |
|
12.3.2 Simulation Results |
|
|
296 | (2) |
|
12.4 2.5D I/O with Clock Data Recovery |
|
|
298 | (6) |
|
|
298 | (1) |
|
|
299 | (1) |
|
12.4.3 Phase Interpolator |
|
|
300 | (1) |
|
12.4.4 Measurement Results |
|
|
301 | (6) |
|
|
301 | (1) |
|
|
302 | (2) |
|
|
304 | (1) |
|
|
305 | (18) |
|
|
305 | (2) |
|
|
307 | (11) |
|
|
307 | (2) |
|
|
309 | (3) |
|
13.2.2.1 Core-to-core Communication |
|
|
310 | (1) |
|
13.2.2.2 Core-to-memory Communication |
|
|
311 | (1) |
|
|
312 | (2) |
|
|
314 | (4) |
|
|
315 | (1) |
|
|
315 | (2) |
|
13.2.4.3 Voltage-controlled Oscillator |
|
|
317 | (1) |
|
13.3 2.5D Multi-core Microprocessor |
|
|
318 | (3) |
|
|
318 | (1) |
|
|
318 | (1) |
|
13.3.3 Simulation Results |
|
|
318 | (3) |
|
|
321 | (2) |
|
|
323 | (26) |
|
|
323 | (1) |
|
14.2 3D Hybrid Memory with ReRAM |
|
|
324 | (2) |
|
14.3 ReRAM-crossbar Memory Design |
|
|
326 | (14) |
|
14.3.1 Performance Modeling |
|
|
331 | (6) |
|
|
331 | (3) |
|
|
334 | (2) |
|
|
336 | (1) |
|
14.3.1.4 Stacked CBRAM-crossbar Memory |
|
|
337 | (1) |
|
14.3.2 Design Space Exploration |
|
|
337 | (3) |
|
14.4 ReRAM Block-level Incremental Data Retention |
|
|
340 | (7) |
|
|
341 | (1) |
|
14.4.2 Incremental Write-back |
|
|
342 | (2) |
|
14.4.3 Simulation Results |
|
|
344 | (3) |
|
|
347 | (2) |
Bibliography |
|
349 | (24) |
Index |
|
373 | |