Atnaujinkite slapukų nuostatas

El. knyga: Advances in Atomic, Molecular, and Optical Physics

Volume editor (Universita di Pisa, Italy), Volume editor (Physics Department, University of Wisconsin, Madison, WI, USA), Volume editor (University of Michigan, Physics Department, Ann Arbor, USA)
Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Advances in Atomic, Molecular, and Optical Physics publishes reviews of recent developments in a field which is in a state of rapid growth, as new experimental and theoretical techniques are used on many old and new problems. Topics covered include related applied areas, such as atmospheric science, astrophysics, surface physics and laser physics. Articles are written by distinguished experts, and contain both relevant review material and detailed descriptions of important recent developments.



• International experts
• Comprehensive articles
• New developments

Advances in Atomic, Molecular, and Optical Physics publishes reviews of recent developments in a field which is in a state of rapid growth, as new experimental and theoretical techniques are used on many old and new problems. Topics covered include related applied areas, such as atmospheric science, astrophysics, surface physics and laser physics. Articles are written by distinguished experts, and contain both relevant review material and detailed descriptions of important recent developments.



• International experts
• Comprehensive articles
• New developments

Recenzijos

"All the series are written by experts in the field, and their summaries are most timely.... Strongly recommended." --American Scientist

Daugiau informacijos

a comprehensive picture of important recent developments
Contributors ix
Preface xiii
1 The Use of the Magnetic Angle Changer in Atomic and Molecular Physics
1(64)
George C. King
1 Introduction and Background
2(4)
2 Principles of Operation of the MAC and Practical Realizations of it
6(11)
3 Elastic Electron Scattering and Vibrational Excitation
17(14)
4 Inelastic Electron Scattering
31(6)
5 Resonances in Electron Impact Excitation of Atoms and Molecules
37(9)
6 Coincidence Studies in Electron Impact Excitation and Ionization
46(7)
7 Photoelectron Spectroscopy
53(5)
8 Conclusions
58(7)
References
58(7)
2 X-ray Methods in High-Intensity Discharges and Metal-Halide Lamps: X-ray Induced Fluorescence
65(54)
John J. Curry
Walter P. Lapatovich
Albert Henins
1 Introduction
66(2)
2 High-Intensity Discharges and Metal-Halide Lamps
68(7)
3 Why X-ray Methods?
75(2)
4 Interaction of X-rays with Atoms
77(8)
5 X-ray Induced Fluorescence Spectroscopy (XRIF)
85(28)
6 Summary
113(6)
Glossary
114(1)
References
115(4)
3 Time-Domain Interferometry with Laser-Cooled Atoms
119(82)
B. Barrett
I. Chan
C. Mok
A. Carew
I. Yavin
A. Kumarakrishnan
S. B. Cahn
T. Sleator
1 Introduction and Description of Two-Pulse Standing Wave Interferometer
121(8)
2 Time-Domain Atom Interferometer Experiments---Atomic Recoil
129(22)
3 Lattice Interferometry
151(8)
4 Frequency-Domain AI Experiments
159(6)
5 Time-Domain AI Experiments---Gravity
165(6)
6 Internal State Labeled Interferometer
171(9)
7 Coherent Transient Effects
180(6)
8 Superfluorescence in Cold Atoms
186(15)
Acknowledgments
193(1)
References
193(8)
4 Interaction between Atomic Ensembles and Optical Resonators: Classical Description
201(38)
Haruka Tanji-Suzuki
Ian D. Leroux
Monika H. Schleier-Smith
Marko Cetina
Andrew T. Grier
Jonathan Simon
Vladan Vuletic
1 Introduction
202(4)
2 Interaction between a Single Atom and a Free-Space Mode
206(6)
3 Interaction between an Atomic Ensemble and a Free-Space Mode
212(3)
4 Interaction between a Single Atom and a Cavity Mode
215(12)
5 Interaction between an Atomic Ensemble and a Cavity Mode
227(3)
6 Quantum Mechanical Expression for the Cooperativity Parameter
230(1)
7 Conclusion
231(8)
Acknowledgments
232(1)
References
232(7)
5 The First Atomic and Molecular Experiments at the Linac Coherent Light Source X-Ray Free Electron Laser
239(52)
Philip H. Bucksbaum
Ryan Coffee
Nora Berrah
1 Introduction
240(3)
2 Optical Properties of X-rays from Electron Accelerators
243(4)
3 Photoexcitation and Photoionization
247(8)
4 Layout of LCLS Experimental Halls
255(8)
5 Initial Experiments on X-ray Photoionization
263(14)
6 First Optical-Pump, X-ray Probe Experiments
277(2)
7 Future Prospects
279(12)
Acknowledgments
285(1)
References
285(6)
6 Generation and Applications of n-Qubit Hyperentangled Photon States
291(24)
Giuseppe Vallone
Paolo Mataloni
1 Introduction
292(1)
2 Hyperentanglement
293(2)
3 Hyperentangled/MultiDOF Photon States: Experimental Realizations
295(7)
4 Hyperentanglement for Quantum Information
302(7)
5 Conclusions
309(6)
References
310(5)
7 A Pseudoclassical Method for the Atom-Optics Kicked Rotor: from Theory to Experiment and Back
315(56)
Mark Sadgrove
Sandro Wimberger
1 Introduction
316(9)
2 The Pseudoclassical Method for Nearly Resonant Quantum Motion
325(9)
3 Application of the Pseudoclassical Method
334(27)
4 Conclusions and Outlook
361(10)
Acknowledgments
364(1)
References
364(7)
8 Principles and Applications of Attosecond Technology
371(44)
Francesca Calegari
Federico Ferrari
Matteo Lucchini
Matteo Negro
Caterina Vozzi
Salvatore Stagira
Giuseppe Sansone
Mauro Nisoli
1 Introduction
372(1)
2 Schemes for Generation of Isolated Attosecond Pulses
373(14)
3 Numerical Methods for the Investigation of the Harmonic Generation Process
387(10)
4 Applications of Isolated Attosecond Pulses
397(11)
5 Conclusions
408(7)
Acknowledgments
408(1)
References
409(6)
9 Accurate Evaluation of Parameters of Optical Lattice Clocks
415(46)
Andrei Derevianko
Sergey G. Porsev
1 Introduction
416(2)
2 Solving the Atomic Many-Body Problem
418(11)
3 Magic Wavelength
429(7)
4 Hyperfine Quenching of the 3P0 States
436(4)
5 Hyperfine-Induced Vector Light Shift in the 3P0 State
440(3)
6 Zeeman Effect
443(3)
7 Blackbody Radiation Shift
446(8)
8 Rayleigh Heating Rates
454(1)
9 Summary
455(6)
Acknowledgments
455(1)
References
455(6)
10 Confinement-Induced Resonances
461(50)
Vanja Dunjko
Michael G. Moore
Thomas Bergeman
Maxim Olshanii
1 Introduction
462(3)
2 Confinement and Effective Theories
465(2)
3 The CIR in Effectively ID Systems
467(28)
4 Other Types of CIR
495(7)
5 Experimental Realizations
502(5)
6 Future Directions
507(4)
References
507(4)
Index 511(14)
Contents of Volumes in this Serial 525
Paul Berman is Professor of Physics at the University of Michigan. In a career spanning over 40 years, Professor Berman has been engaged in theoretical research related to the interaction of radiation with matter. Of particular interest is the identification of atom-field configurations which can result in qualitatively new phenomena. Professor Berman is a Fellow of the American Physical Society and the Optical Society of America. He is the co-author of a textbook, Principles of Laser Spectroscopy and Quantum Optics, published in2010 by Princeton University Press. Ennio Arimondo is Professor of Physics at the University of Pisa, Italy. In a a long research career, Professor Arimondo has been engaged in experimental and theoretical research related to laser spectroscopy, the interaction of radiation with matter, laser cooling and new phenomena of ultracold atomic gases. Professor Arimondo is a Fellow of the American Physical Society and of the Institute of Physics. He is editor of Conference and School Proceedings. Chun C. Lin is Professor of Physics at the University of Wisconsin Madison. He has been working in various areas of atomic and molecular physics for several decades. He received the American Physical Society Will Allis Prize for advancing the understanding of the microscopic behavior of ionized gases through his innovative and pioneering studies of excitation in electron and ion collisions with atomic and molecular targets” in 1996. He is a Fellow of the American Physical Society and has served as the Chair of the Division of Atomic, Molecular and Optical Physics in the American Physical Society (1994 1995).