Atnaujinkite slapukų nuostatas

El. knyga: Advances in Atomic, Molecular, and Optical Physics

Volume editor (University of Michigan, Physics Department, Ann Arbor, USA), Volume editor (Physics Department, University of Wisconsin, Madison, WI, USA), Volume editor (Universita di Pisa, Italy)
Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Advances in Atomic, Molecular, and Optical Physics publishes reviews of recent developments in a field which is in a state of rapid growth, as new experimental and theoretical techniques are used on many old and new problems. Topics covered include related applied areas, such as atmospheric science, astrophysics, surface physics and laser physics. Articles are written by distinguished experts, and contain both relevant review material and detailed descriptions of important recent developments.



• International experts
• Comprehensive articles
• New developments

Advances in Atomic, Molecular, and Optical Physics publishes reviews of recent developments in a field which is in a state of rapid growth, as new experimental and theoretical techniques are used on many old and new problems. Topics covered include related applied areas, such as atmospheric science, astrophysics, surface physics and laser physics. Articles are written by distinguished experts, and contain both relevant review material and detailed descriptions of important recent developments.



• International experts
• Comprehensive articles
• New developments

Recenzijos

"All the series are written by experts in the field, and their summaries are most timely.... Strongly recommended." --American Scientist

Daugiau informacijos

a comprehensive picture of important recent developments
Contributors ix
Preface xiii
1 Engineered Open Systems and Quantum Simulations with Atoms and Ions
1(80)
Markus Muller
Sebastian Diehl
Guido Pupillo
Peter Zoller
1 Introduction
3(3)
2 Digital Quantum Simulation with Trapped Ions and Rydberg Atoms
6(29)
3 Engineered Open Systems with Cold Atoms
35(34)
4 Outlook
69(12)
Acknowledgments
71(1)
References
71(10)
2 Entanglement of Two Atoms Using Rydberg Blockade
81(36)
Thad G. Walker
Mark Saffman
1 Introduction
82(2)
2 Entanglement Using Rydberg Blockade
84(3)
3 Trapping and Readout of Single Atoms
87(6)
4 State Preparation
93(3)
5 Coherent Rydberg Rabi Flopping
96(5)
6 Rydberg Blockade
101(2)
7 CNOT Gate
103(2)
8 Entanglement Verification
105(2)
9 Future Improvements
107(10)
Acknowledgments
112(1)
References
112(5)
3 Atomic and Molecular Ionization Dynamics in Strong Laser Fields: From Optical to X-rays
117(42)
Pierre Agostini
Louis F. DiMauro
1 Introduction
118(2)
2 The First 30 Years of Multiphoton Physics (1963-1993)
120(6)
3 Wavelength Scaling of Strong-Field Atomic Physics
126(5)
4 Low-Energy Structure in Photoelectron Energy Distribution in the Strong-Field Limit
131(6)
5 Electron Momentum Distribution and Time-Dependent Imaging
137(4)
6 Non-Sequential Multiple Ionization at Long Wavelengths
141(5)
7 Strong-Field X-Ray Physics: A Future Path
146(5)
8 Outlook
151(8)
Acknowledgments
152(1)
References
152(7)
4 Frontiers of Atomic High-Harmonic Generation
159(50)
M. C. Kohler
T. Pfeifer
K. Z. Hatsagortsyan
C. H. Keitel
1 Introduction
160(3)
2 Fundamental Concepts of HHG and Attosecond Pulses
163(16)
3 Hard X-Ray HHG and Zeptosecond Pulses
179(9)
4 HHG in Shaped Driving Pulses
188(4)
5 Experimental Applications
192(4)
6 Outlook
196(13)
References
197(12)
5 Teaching an Old Dog New Tricks: Using the Flowing Afterglow to Measure Kinetics of Electron Attachment to Radicals, Ion-Ion Mutual Neutralization, and Electron Catalyzed Mutual Neutralization
209(86)
Nicholas S. Shuman
Thomas M. Miller
Albert A. Viggiano
Jurgen Troe
1 Brief History of Ion Flow Tube Apparatuses
210(5)
2 Electron Attachment Using the Traditional FALP Technique
215(4)
3 VENDAMS Method
219(11)
4 Electron Attachment to Transient Species
230(33)
5 Mutual Neutralization of Anion-Cation Pairs
263(16)
6 Electron Catalyzed Mutual Neutralization
279(5)
7 Concluding Remarks
284(11)
Acknowledgments
286(1)
References
286(9)
6 Superradiance: An Integrated Approach to Cooperative Effects in Various Systems
295(36)
Guin-Dar Lin
Susanne F. Yelin
1 Introduction
296(3)
2 Model
299(5)
3 Cooperative Effects in a Homogeneous Gas of Two-Level Atoms
304(10)
4 Correlation and Entanglement
314(2)
5 Doppler Broadening
316(3)
6 Multi-Level Cascade
319(6)
7 Conclusion
325(6)
Acknowledgements
326(1)
References
326(5)
7 Construction of the Resolvent for a Few-body System
331(78)
Robin Shakeshaft
1 Introduction
333(9)
2 Scattering Amplitude and the Resolvent
342(2)
3 Resolvent; Preliminary Considerations
344(5)
4 Evolution of a Free-Particle Wavepacket
349(6)
5 Regularization
355(2)
6 Basis Functions
357(2)
7 Correlation Amplitude
359(5)
8 Time-Translation Operator
364(11)
9 Resolvent
375(10)
10 Example
385(10)
11 Appendices
395(14)
Acknowledgments
395(11)
References
406(3)
8 Beyond the Rayleigh Limit in Optical Lithography
409(58)
Mohammad Al-Amri
Zeyang Liao
M. Suhail Zubairy
1 Introduction
410(3)
2 Classical Photolithography and the Diffraction Limit
413(3)
3 Classical Multi-Photon Lithography
416(2)
4 Quantum Interferometric Optical Lithography
418(5)
5 Sub wavelength Interferometric Lithography Via Classical Light
423(17)
6 Resonant Subwavelength Lithography Via Dark State
440(10)
7 Subwavelength Photolithography Via Rabi Oscillations
450(10)
8 Summary and Outlook
460(7)
Acknowledgments
461(1)
References
462(5)
9 The Autler-Townes Effect in Molecules: Observations, Theory, and Applications
467(48)
H. Ahmed
John Hitennekens
Teodora Kirova
Jianbing Qi
A. Marjatta Lyyra
1 Introduction
468(6)
2 Theoretical Analysis
474(10)
3 Experimental Details
484(2)
4 Applications to Molecules
486(22)
5 Conclusions
508(7)
Acknowledgments
509(1)
References
509(6)
10 Kilohertz-driven Bose-Einstein Condensates in Optical Lattices
515(34)
Ennio Arimondo
Donatella Ciampini
Andre Eckardt
Martin Holthaus
Oliver Morsch
1 Introduction
516(2)
2 The Quest for Floquet Condensates
518(6)
3 The Experimental Setup: Shaken Optical Lattices
524(4)
4 The Driven Bose-Hubbard Model
528(2)
5 Interference Patterns Produced by Floquet States
530(9)
6 Experimental Results
539(5)
7 Conclusions
544(5)
Acknowledgements
544(1)
References
545(4)
Index 549(20)
Contents of Volumes in this Serial 569
Paul Berman is Professor of Physics at the University of Michigan. In a career spanning over 40 years, Professor Berman has been engaged in theoretical research related to the interaction of radiation with matter. Of particular interest is the identification of atom-field configurations which can result in qualitatively new phenomena. Professor Berman is a Fellow of the American Physical Society and the Optical Society of America. He is the co-author of a textbook, Principles of Laser Spectroscopy and Quantum Optics, published in2010 by Princeton University Press. Ennio Arimondo is Professor of Physics at the University of Pisa, Italy. In a a long research career, Professor Arimondo has been engaged in experimental and theoretical research related to laser spectroscopy, the interaction of radiation with matter, laser cooling and new phenomena of ultracold atomic gases. Professor Arimondo is a Fellow of the American Physical Society and of the Institute of Physics. He is editor of Conference and School Proceedings. Chun C. Lin is Professor of Physics at the University of Wisconsin Madison. He has been working in various areas of atomic and molecular physics for several decades. He received the American Physical Society Will Allis Prize for advancing the understanding of the microscopic behavior of ionized gases through his innovative and pioneering studies of excitation in electron and ion collisions with atomic and molecular targets” in 1996. He is a Fellow of the American Physical Society and has served as the Chair of the Division of Atomic, Molecular and Optical Physics in the American Physical Society (1994 1995).