Atnaujinkite slapukų nuostatas

El. knyga: Advances in Atomic, Molecular, and Optical Physics

Volume editor (Universita di Pisa, Italy), Volume editor (Physics Department, University of Wisconsin, Madison, WI, USA), Volume editor (University of Michigan, Physics Department, Ann Arbor, USA)

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Advances in Atomic, Molecular, and Optical Physics publishes reviews of recent developments in a field that is in a state of rapid growth, as new experimental and theoretical techniques are used on many old and new problems. Topics covered include related applied areas, such as atmospheric science, astrophysics, surface physics and laser physics. Articles are written by distinguished experts and contain relevant review material and detailed descriptions of important recent developments.



• International experts
• Comprehensive articles
• New developments

Recenzijos

"All the series are written by experts in the field, and their summaries are most timely.... Strongly recommended." --American Scientist

Daugiau informacijos

A comprehensive picture of important recent developments
Contributors vii
Preface ix
1 Detection of Metastable Atoms and Molecules using Rare Gas Matrices
1(46)
J. William McConkey
Wladyslaw Kedzierski
1 Introduction
2(1)
2 Basic Concepts
3(5)
3 Experimental Details
8(9)
4 Calibrations
17(4)
5 O(1S) Measurements
21(11)
6 O(1D) Measurements
32(2)
7 Sulfur Measurements
34(5)
8 CO Measurements
39(2)
9 Future Possibilities
41(6)
References
42(5)
2 Interactions in Ultracold Rydberg Gases
47(88)
Luis G. Marcassa
James P. Shaffer
1 Introduction
48(1)
2 Pair Interactions
49(16)
3 Rydberg Atom Molecules
65(42)
4 Many-Body and Multiparticle Effects
107(15)
5 Conclusion and Perspectives
122(13)
Acknowlegments
125(1)
References
125(10)
3 Atomic, Molecular, and Optical Physics in the Early Universe: From Recombination to Reionization
135(136)
Simon C.O. Glover
Jens Chluba
Steve R. Furlanetto
Jonathan R. Pritchard
Daniel Wolf Savin
1 Introduction
136(7)
2 Cosmological Recombination
143(25)
3 Pregalactic Gas Chemistry
168(12)
4 Population III Star Formation
180(17)
5 The 21-cm Line of Atomic Hydrogen
197(20)
6 The Reionization of Intergalactic Hydrogen
217(23)
7 Summary
240(31)
Appendix A Acronyms
242(1)
Appendix B Symbols
243(10)
References
253(18)
4 Atomic Data Needs for Understanding X-ray Astrophysical Plasmas
271(52)
Randall K. Smith
Nancy S. Brickhouse
1 Introduction
273(1)
2 Charge State Distribution
274(11)
3 Spectral Features
285(21)
4 Conclusions
306(17)
References
307(16)
5 Energy Levels of Light Atoms in Strong Magnetic Fields
323(36)
Anand Thirumalai
Jeremy S. Heyl
1 Introduction
323(2)
2 Historical Background
325(2)
3 The Lightest “r;Light”r; Atom---Hydrogen
327(12)
4 Light Atoms: Two and Few-Electron Systems
339(14)
5 Concluding Remarks and Future Prospects
353(6)
References
354(5)
6 Quantum Electrodynamics of Two-Level Atoms in 1D Configurations
359(80)
Jamal T. Manassah
1 Introduction
360(4)
2 The 1D Kernel and Its Spectral Decomposition
364(17)
3 Propagation of an Ultrashort Pulse in a Slab and the Ensuing Emitted Radiation Spectrum
381(14)
4 Near-Threshold Behavior for the Pumped Stationary State
395(14)
5 Polariton--Plasmon Coupling, Transmission Peaks, and Purcell--Dicke Ultraradiance
409(10)
6 Periodic Structures
419(11)
7 Conclusion
430(9)
Acknowledgments
431(1)
Appendix. Transfer Matrix Formalism
431(5)
References
436(3)
Index 439(6)
Contents of Volumes in This Serial 445
Paul Berman is Professor of Physics at the University of Michigan. In a career spanning over 40 years, Professor Berman has been engaged in theoretical research related to the interaction of radiation with matter. Of particular interest is the identification of atom-field configurations which can result in qualitatively new phenomena. Professor Berman is a Fellow of the American Physical Society and the Optical Society of America. He is the co-author of a textbook, Principles of Laser Spectroscopy and Quantum Optics, published in2010 by Princeton University Press. Ennio Arimondo is Professor of Physics at the University of Pisa, Italy. In a a long research career, Professor Arimondo has been engaged in experimental and theoretical research related to laser spectroscopy, the interaction of radiation with matter, laser cooling and new phenomena of ultracold atomic gases. Professor Arimondo is a Fellow of the American Physical Society and of the Institute of Physics. He is editor of Conference and School Proceedings. Chun C. Lin is Professor of Physics at the University of Wisconsin Madison. He has been working in various areas of atomic and molecular physics for several decades. He received the American Physical Society Will Allis Prize for advancing the understanding of the microscopic behavior of ionized gases through his innovative and pioneering studies of excitation in electron and ion collisions with atomic and molecular targets” in 1996. He is a Fellow of the American Physical Society and has served as the Chair of the Division of Atomic, Molecular and Optical Physics in the American Physical Society (1994 1995).