Atnaujinkite slapukų nuostatas

El. knyga: Advances in Atomic, Molecular, and Optical Physics

Volume editor (Universita di Pisa, Italy), Volume editor (Physics Department, University of Wisconsin, Madison, WI, USA), Volume editor (Physics Department, University of Connecticut, Storrs, CT, USA)

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Advances in Atomic, Molecular, and Optical Physics provides a comprehensive compilation of recent developments in a field that is in a state of rapid growth, as new experimental and theoretical techniques are used on many problems, both old and new.Topics covered include related applied areas, such as atmospheric science, astrophysics, surface physics, and laser physics, with timely articles written by distinguished experts that contain relevant review material and detailed descriptions of important developments in the field.Presents the work of international experts in the fieldComprehensive articles compile recent developments in a field that is experiencing rapid growth, with new experimental and theoretical techniques emergingIdeal for users interested in optics, excitons, plasmas, and thermodynamicsTopics covered include atmospheric science, astrophysics, surface physics, and laser physics, amongst others

Daugiau informacijos

Timely articles by distinguished experts offer relevant review material and detailed descriptions of important developments in atomic, molecular, and optical physics
Contributors ix
Preface xiii
1 Paradox of Self-Interaction Correction: How Can Anything So Right Be So Wrong?
1(14)
John P. Perdew
Adrienn Ruzsinszky
Jianwei Sun
Mark R. Pederson
1 Introduction
2(4)
2 What Is Right About PZ SIC?
6(1)
3 What Is Wrong About PZ SIC?
7(1)
4 SIC: How Can Anything So Right Be So Wrong? (Conclusions)
8(7)
Acknowledgments
10(1)
Appendix. Do Complex Orbitals Resolve the Paradox of SIC?
11(1)
References
12(3)
2 Local Spin Density Treatment of Substitutional Defects in Ionic Crystals with Self-Interaction Corrections
15(14)
Koblar Alan Jackson
1 Introduction
15(3)
2 Free-Ion Calculations
18(2)
3 Pure Crystal Calculation
20(1)
4 Embedded-Cluster Approach to Isolated Impurities
21(5)
5 Discussion
26(3)
Acknowledgment
27(1)
References
27(2)
3 Electronic Transport as a Driver for Self-Interaction-Corrected Methods
29(58)
Anna Pertsova
Carlo Maria Canali
Mark R. Pederson
Ivan Rungger
Stefano Sanvito
1 Electron Transport Formalism
32(3)
2 Atomic Self-Interaction Correction
35(4)
3 Linear Response: Energy Level Alignment
39(8)
4 Derivative Discontinuity of Exchange-Correlation Functional
47(15)
5 Recent Developments: DFT-NEGF with Improved Exchange-Correlation Functionals
62(2)
6 Tunneling Transport Through Magnetic Molecules
64(23)
Acknowledgments
80(1)
References
80(7)
4 The Two-Set and Average-Density Self-Interaction Corrections Applied to Small Electronic Systems
87(18)
Phuong Mai Dinh
Paul-Gerhard Reinhard
Eric Suraud
Marc Vincendon
1 The Two-Set SIC Scheme
88(4)
2 Average-Density SIC---A Very Simple Approach
92(1)
3 Results
92(1)
4 Test of Molecular Binding for the N2 Dimer
93(1)
5 Dynamical Simulation of Ionization and IP
94(2)
6 On Koopmans' Theorem
96(2)
7 A Critical Example: Na(H2O)n
98(3)
8 PES and the Impact of s.p. Energies
101(4)
References
102(3)
5 Koopmans-Compliant Self-Interaction Corrections
105(24)
Nicolas Poilvert
Giovanni Borghi
Ngoc Linh Nguyen
Nathan Daniel Keilbart
Kevin Wang
Ismaila Dabo
1 Introduction: Toward Many-Electron Self-Interaction Corrections
105(1)
2 Defining Self-Interaction Errors
106(5)
3 Classifying Self-Interaction Corrections
111(3)
4 Koopmans-Compliant PZ Correction
114(9)
5 Conclusion
123(6)
Acknowledgments
123(1)
References
123(6)
6 Constrained Local Potentials for Self-Interaction Correction
129(14)
Nikitas Gidopoulos
Nektarios N.N. Lathiotakis
1 Constraining the Optimal Local Potential to Heal Self-Interaction
129(4)
2 Applications of the Approach of Constrained Local Potential
133(6)
3 Perspectives
139(4)
Acknowledgment
141(1)
References
141(2)
7 Self-Interaction Correction as a Kohn-Sham Scheme in Ground-State and Time-Dependent Density Functional Theory
143(10)
Stephan Kummel
References
149(4)
8 Self-Interaction Corrections Within the Fermi-Orbital-Based Formalism
153(28)
Mark R. Pederson
Tunna Baruah
1 Introduction
154(3)
2 Fermi-Orbital SIC
157(4)
3 Energies and Derivatives Within Fermi-Orbital SIC
161(7)
4 Applications
168(9)
5 Outlook
177(4)
Acknowledgments
178(1)
References
178(3)
9 Laser Spectroscopy and Quantum Optics in GaAs and InAs Semiconductor Quantum Dots
181(42)
Duncan G. Steel
1 Introduction
182(3)
2 Early Experiments on Fluctuation and Self-Assembled Quantum Dots: Suppression of the Usual Many-Body Physics Seen in Higher
Dimensional Structures
185(7)
3 Quantum Coherence, Coherent Optical Control, and Application to Quantum Information
192(26)
4 Summary
218(5)
Acknowledgments
218(1)
References
219(4)
10 Ultracold Neutral Plasmas Well into the Strongly Coupled Regime
223(50)
Michael S. Murillo
Scott D. Bergeson
1 Introduction
224(3)
2 Transport in Dense Plasmas
227(4)
3 UNP Experiment
231(4)
4 Electron Shielding, 1 ≤ Γ ≤ 4
235(3)
5 Strong Coupling in Screened Plasmas
238(2)
6 Structure of Ultracold Plasmas
240(2)
7 Using Rydberg States to Preorder the Neutral Gas
242(7)
8 Multiple Ionization
249(8)
9 Laser-Cooling the Ions
257(7)
10 Dual-Species Plasmas
264(1)
11 Conclusion
264(9)
Acknowledgments
265(1)
References
265(8)
11 Coherent Population Trapping, Nuclear Spin Cooling, and Levy Flights in Solid-State Atom-Like Systems
273(56)
Swati Singh
Yiwen Chu
Mikhail Lukin
Susanne Yelin
1 Introduction
274(3)
2 Physical System and Experiments: Overview
277(13)
3 Simulating Spin Bath Cooling
290(7)
4 Photon Statistics
297(9)
5 Conclusion
306(23)
Acknowledgments
307(1)
Appendix A NV-Laser Interaction Details
307(2)
Appendix B Details of Hyperfine Interaction
309(5)
Appendix C Simulating a Realistic 13!C Spin Bath
314(10)
References
324(5)
12 Thermodynamics of Quantum Systems Under Dynamical Control
329(68)
David Gelbwaser-Klimovsky
Wolfgang Niedenzu
Gershon Kurizki
1 Introduction
331(12)
2 Steady-State Cycles Under Periodic Modulation
343(7)
3 Periodically Modulated Qubit-Based Heat Machine
350(6)
4 QHMs Based on Periodically Modulated Multilevel Systems
356(6)
5 Quantum Heat Engines Driven by a Quantum Piston
362(6)
6 Self-contained QR with a Quantum Piston
368(2)
7 Continuously Driven Qubit as Quantum Cooler
370(4)
8 Cooling Speed of Quantum Baths
374(3)
9 Control of Non-Markovian Thermodynamic Processes
377(6)
10 Work-Information Relation Under Non-Markovian Evolution: Violation of the SL Bound
383(6)
11 Discussion and Outlook
389(8)
Acknowledgments
396(1)
References 397(12)
Index 409(12)
Contents of Volumes in This Serial 421
Ennio Arimondo is Professor of Physics at the University of Pisa, Italy. In a a long research career, Professor Arimondo has been engaged in experimental and theoretical research related to laser spectroscopy, the interaction of radiation with matter, laser cooling and new phenomena of ultracold atomic gases. Professor Arimondo is a Fellow of the American Physical Society and of the Institute of Physics. He is editor of Conference and School Proceedings. Chun C. Lin is Professor of Physics at the University of Wisconsin Madison. He has been working in various areas of atomic and molecular physics for several decades. He received the American Physical Society Will Allis Prize for advancing the understanding of the microscopic behavior of ionized gases through his innovative and pioneering studies of excitation in electron and ion collisions with atomic and molecular targets” in 1996. He is a Fellow of the American Physical Society and has served as the Chair of the Division of Atomic, Molecular and Optical Physics in the American Physical Society (1994 1995). Susanne F. Yelin, is at the Physics Department, University of Connecticut, Storrs, CT, USA