Atnaujinkite slapukų nuostatas

El. knyga: Advances in Condensed Matter Optics

  • Formatas: 287 pages
  • Išleidimo metai: 16-Dec-2014
  • Leidėjas: De Gruyter
  • Kalba: eng
  • ISBN-13: 9783110388183
Kitos knygos pagal šią temą:
  • Formatas: 287 pages
  • Išleidimo metai: 16-Dec-2014
  • Leidėjas: De Gruyter
  • Kalba: eng
  • ISBN-13: 9783110388183
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Chen, Dai, Jiang, Jin, Liu, and Zhao offer this summary of some of the past two decades’ most interesting novel discoveries in the field of condensed matter optics. Aimed at a broad audience of graduate students and scholars, the book particularly highlights the work of Chinese scientists. Six topics of interest are chosen: narrow band gap semiconductors, including structural properties, crystal growth, optical and electrical properties, and applications; analysis of metamaterial systems and hyperinterfaces with a group velocity model, including the investigation of such phenomena as optical cloaking; light propagation at metal surfaces; photo-induced spin in materials with varying magnetic properties; the photoelectric effect in perovskite oxide heterostructures; and magnetic resonance effects in large metamolecules. Annotation ©2015 Ringgold, Inc., Portland, OR (protoview.com)
Preface vii
1 Optoelectronic properties of narrow band gap semiconductors
1(50)
Ning Dai
1.1 Introduction
1(2)
1.2 Fundamental properties of NGSs
3(18)
1.2.1 Electronic states and band structures
4(4)
1.2.2 Structural characteristics
8(1)
1.2.3 Crystal growth
9(3)
1.2.4 Electronic properties
12(3)
1.2.5 Optical properties
15(6)
1.3 Narrow band gap semiconductors and their basic characteristics
21(10)
1.3.1 Mercury cadmium telluride (Hg1-xCdxTe)
21(4)
1.3.2 Indium antimonide (InSb), Indium arsenide (InAs), Indium arsenide antimonide (InAs1-xSbx)
25(2)
1.3.3 Lead telluride (PbTe), lead selenide (PbSe), lead sulfide (PbS) and tellurium tin-lead (Pb1-xSnxTe)
27(3)
1.3.4 Heterojunctions, quantum wells, and superlattices
30(1)
1.4 Basic principles and applications of infrared optoelectronic devices
31(20)
1.4.1 Basic principles of infrared detectors
31(4)
1.4.2 Parameters for characterizing the performance of infrared detectors
35(2)
1.4.3 Photoconductive infrared detectors
37(2)
1.4.4 Photovoltaic infrared detectors
39(4)
1.4.5 Quantum well infrared photodetectors
43(1)
1.4.6 Infrared light sources: infrared light emitting devices and infrared lasers
44(7)
2 The group velocity picture: the dynamic study of metamaterial systems
51(56)
Xunya Jiang
Wei Li
Zheng Liu
Xulin Lin
Xianggao Zhang
Zixian Liang
Peijun Yao
2.1 Introduction
51(3)
2.2 Hyperinterface, the bridge between radiative and evanescent waves
54(7)
2.2.1 Introduction
54(1)
2.2.2 Model
55(1)
2.2.3 Hyperbola dispersion and compressing light pulses effect at HI
56(1)
2.2.4 Analysis of abnormal optical properties of HI with group velocity
57(2)
2.2.5 Numerical experiments and results
59(1)
2.2.6 Section summary
60(1)
2.3 Methods for detecting vacuum polarization by evanescent modes
61(7)
2.3.1 Study model
62(2)
2.3.2 The phase change and delay time of evanescent waves in a tiny dissipative medium
64(1)
2.3.3 Vacuum polarization and refraction index deviations of a vacuum
65(1)
2.3.4 Detecting vacuum polarization: phase change and delay time
66(2)
2.3.5 Section summary
68(1)
2.4 The temporal coherence gain of the negative-index superlens image
68(7)
2.4.1 Introduction
68(1)
2.4.2 Model
69(1)
2.4.3 Unusual phenomena
70(1)
2.4.4 Physical images
71(1)
2.4.5 Our theory
72(2)
2.4.6 Section summary
74(1)
2.5 Dynamical process for dispersive cloaking structures
75(7)
2.5.1 Introduction
75(1)
2.5.2 Study model
76(1)
2.5.3 The physical dynamical picture of invisible cloaking
77(1)
2.5.4 The key factor for the dynamics of invisible cloaking
78(3)
2.5.5 Section summary
81(1)
2.6 Limitation of the electromagnetic cloak with dispersive material
82(6)
2.6.1 Introduction
82(1)
2.6.2 The group velocity and physical limitation of invisible cloaking
83(2)
2.6.3 Numerical results and discussion
85(2)
2.6.4 Section summary
87(1)
2.7 Confining the one-way mode at a magnetic domain wall
88(7)
2.7.1 Introduction
88(1)
2.7.2 Model
89(1)
2.7.3 Confining the one-way mode
90(2)
2.7.4 Robustness against roughness
92(1)
2.7.5 Photonic splitters and benders
92(2)
2.7.6 Section summary
94(1)
2.8 Bullet-like light pulse in linear photonic crystals
95(5)
2.8.1 Introduction
95(1)
2.8.2 The condition for the existence of bullet-like light pulses
95(1)
2.8.3 The bullet-like light pulse in PCs
96(1)
2.8.4 Numerical validation
96(2)
2.8.5 The effect of high-order dispersion
98(1)
2.8.6 Section summary
99(1)
2.9 Summary
100(7)
3 Study of the characteristics of light propagating at the metal-based interface
107(32)
Liangyao Chen
Yuxiang Zheng
Songyou Wang
3.1 Introduction
107(1)
3.2 The free-electron gas model and optical constants of metal
108(4)
3.3 Light refraction properties of a metal-based interface
112(18)
3.3.1 Normal refraction
112(1)
3.3.2 Calculations of effective refractive index and refraction angle
113(3)
3.3.3 Negative refraction of metal-based artificial materials
116(4)
3.3.4 Measurement of the effective refractive index and refractive angle of light in metal
120(7)
3.3.5 Influence of variable refractive indices on light velocity
127(3)
3.4 Affect of surface plasma waves on light propagation in metals
130(4)
3.5 Conclusion
134(5)
4 Photo-induced spin dynamics in spintronic materials
139(52)
Haibin Zhao
4.1 Introduction
139(1)
4.2 Theory of magnetization dynamics
140(4)
4.2.1 The Landau-Lifshitz-Gilbert (LLG) equation
140(3)
4.2.2 The Landau-Lifshitz-Bloch (LLB) equation
143(1)
4.3 Optical techniques in studies of spin dynamics
144(10)
4.3.1 Time-resolved magneto-optical spectroscopy
144(7)
4.3.2 Time-resolved magnetic second-harmonic-generation (TR-MSHG)
151(3)
4.4 Photo-induced demagnetization and magnetic phase transition
154(8)
4.4.1 Demagnetization in transition ferromagnetic (FM) metals
154(6)
4.4.2 Demagnetization in other FM materials
160(1)
4.4.3 Ultrafast magnetization generation and FM phase transition
161(1)
4.5 Photo-induced spin precession
162(12)
4.5.1 Uniform spin precession and spin wave in FM materials
162(3)
4.5.2 Spin waves in ferromagnetic materials
165(2)
4.5.3 Mechanisms of spin precession excitation
167(7)
4.6 Photo-induced spin reversal
174(6)
4.6.1 Spin switching and reversal in FM materials
174(2)
4.6.2 Spin reversal in ferromagnetic materials
176(4)
4.7 Spin dynamics at interfaces and in antiferromagnets
180(3)
4.7.1 MSHG and magnetism at interfaces
180(2)
4.7.2 Spin dynamics in antiferromagnets
182(1)
4.8 Conclusions and outlook
183(8)
5 Research on the photoelectric effect in perovskite oxide heterostructures
191(40)
Kuijuan Jin
Chen Ge
Huibin Lu
Guozhen Yang
5.1 Introduction
191(1)
5.2 Perovskite oxide
192(8)
5.2.1 Crystal structure
192(1)
5.2.2 Electron structure
193(2)
5.2.3 Mechanism for photoelectric effects in bulk perovskite oxides
195(5)
5.3 Growth of perovskite oxide films
200(3)
5.3.1 A brief introduction to the film-growth techniques
200(1)
5.3.2 Laser molecular beam epitaxy
201(2)
5.4 Logitudinal photoelectric effects in perovskite oxide heterostructures
203(13)
5.4.1 Light-generated carrier injection effects
203(2)
5.4.2 Photovoltaic effect
205(5)
5.4.3 Theoretical study on longitudinal photoelectric effects
210(6)
5.5 Lateral photoelectric effect in perovskite oxide heterostructures
216(6)
5.5.1 Background
216(1)
5.5.2 Unusual lateral photoelectric effect in perovskite oxide heterostructures
217(2)
5.5.3 Theoretical study
219(3)
5.6 Summary
222(9)
6 Magnetic resonance and coupling effects in metallic metamaterials
231(40)
Hui Liu
Shining Zhu
6.1 Background
231(3)
6.2 Magnetic metamolecules
234(6)
6.2.1 Plasmon hybridization effect
234(1)
6.2.2 Hybridization effect in magnetic metamolecules
235(2)
6.2.3 Stereometamaterial
237(1)
6.2.4 Optical activity in magnetic metamolecules
237(2)
6.2.5 Radiation of magnetic metamolecules
239(1)
6.2.6 Other designs of magnetic metamolecules
239(1)
6.3 One-dimensional magnetic resonator chains
240(8)
6.3.1 Periodic magnetic resonator chain
240(5)
6.3.2 Nonperiodic chain of magnetic resonators
245(2)
6.3.3 Nonlinear and quantum optics of magnetic resonators
247(1)
6.4 Magnetic plasmon crystal
248(17)
6.4.1 Two-dimensional fishnet structure
249(4)
6.4.2 Two-dimensional nanosandwich structures
253(8)
6.4.3 Quantum interference in a three-dimensional magnetic plasmon crystal
261(4)
6.5 Summary and outlook
265(6)
Index 271
L. Chen, Y.-X.Zheng, H. Zhao, Fudan University, Shanghai; N. Dai, SITP, CAS Shanghai; X. Jiang, SIM, CAS Shanghai; K. Jin, IoP, CAS Beijing; H.Liu, Nanjing University.