Part I Image Processing |
|
|
Two-stage Geometric Information Guided Image Reconstruction |
|
|
3 | (22) |
|
|
|
|
3 | (3) |
|
|
3 | (3) |
|
2 Review of Shearlet Transform |
|
|
6 | (1) |
|
3 Proposed Model and Algorithm |
|
|
7 | (7) |
|
3.1 Stage I: TV-L1-L2 Model |
|
|
8 | (3) |
|
3.2 Stage II: wTV-L1-L2 Model |
|
|
11 | (3) |
|
|
14 | (2) |
|
|
16 | (5) |
|
|
17 | (1) |
|
|
18 | (2) |
|
|
20 | (1) |
|
|
21 | (1) |
|
|
22 | (3) |
|
Image Edge Sharpening via Heaviside Substitution and Structure Recovery |
|
|
25 | (24) |
|
|
|
|
|
25 | (3) |
|
2 The Proposed Edge Sharpening Method |
|
|
28 | (4) |
|
|
28 | (1) |
|
2.2 1D Heaviside Function Substitution |
|
|
29 | (2) |
|
|
31 | (1) |
|
|
32 | (2) |
|
4 Results and Discussions |
|
|
34 | (12) |
|
4.1 Application to Image Super-Resolution |
|
|
35 | (8) |
|
4.2 Application to Image Deblurring |
|
|
43 | (2) |
|
4.3 Application to Edge Sharpening |
|
|
45 | (1) |
|
|
46 | (1) |
|
|
46 | (3) |
|
Two-Step Blind Deconvolution of UPC-A Barcode Images |
|
|
49 | (26) |
|
|
|
|
49 | (4) |
|
|
53 | (3) |
|
|
53 | (2) |
|
|
55 | (1) |
|
|
56 | (3) |
|
|
59 | (11) |
|
4.1 Synthetic Data Experiment |
|
|
59 | (1) |
|
|
60 | (8) |
|
4.3 Empirical Verification |
|
|
68 | (2) |
|
|
70 | (1) |
|
|
70 | (5) |
Part II Shape and Geometry |
|
|
An Anisotropic Local Method for Boundary Detection in Images |
|
|
75 | (20) |
|
|
|
|
|
|
|
|
75 | (2) |
|
|
76 | (1) |
|
2 Anisotropic Locally Adaptive Discriminant Analysis |
|
|
77 | (8) |
|
|
81 | (4) |
|
2.2 Maximum Likelihood Estimation p-Value |
|
|
85 | (1) |
|
|
85 | (7) |
|
3.1 Berkeley Benchmark Images |
|
|
85 | (3) |
|
|
88 | (4) |
|
|
92 | (1) |
|
|
93 | (2) |
|
Towards Learning Geometric Shape Parts |
|
|
95 | (18) |
|
|
|
|
|
95 | (1) |
|
2 Background Fundamentals |
|
|
96 | (3) |
|
|
96 | (2) |
|
2.2 Convolutional Neural Networks for Regression |
|
|
98 | (1) |
|
3 A Canonical Parametric Medial Axis |
|
|
99 | (5) |
|
3.1 Canonical Ordering of Linked Medial Branches |
|
|
100 | (2) |
|
3.2 Extracting a Stable Parametric Medial Axis |
|
|
102 | (2) |
|
4 Learning a Partial Parametric Medial Axis Using CNN |
|
|
104 | (1) |
|
4.1 A Partial Representation of the Shape |
|
|
104 | (1) |
|
4.2 Constructing the Neural Network |
|
|
105 | (1) |
|
|
105 | (5) |
|
5.1 General Shape: 1 Branch Model |
|
|
105 | (2) |
|
5.2 Adding a Connected Branch: 2 Branches Model |
|
|
107 | (1) |
|
5.3 Learning Shape Details: 5 Branch Model |
|
|
107 | (3) |
|
6 Discussion and Future Work |
|
|
110 | (1) |
|
|
110 | (3) |
|
Machine Learning in LiDAR 3D Point Clouds |
|
|
113 | (24) |
|
|
|
|
113 | (2) |
|
|
115 | (4) |
|
3 Feature Engineering: Nearest Neighbor Matrix |
|
|
119 | (2) |
|
4 Machine Learning Frameworks |
|
|
121 | (3) |
|
|
123 | (1) |
|
5 Classification Experiments |
|
|
124 | (7) |
|
6 Summary and Future Research Directions |
|
|
131 | (1) |
|
|
132 | (5) |
Part III Machine Learning |
|
|
Fitting Small Piece-Wise Linear Neural Network Models to Interpolate Data Sets |
|
|
137 | (44) |
|
|
|
137 | (2) |
|
|
139 | (1) |
|
|
139 | (1) |
|
4 An Example: Xor Is Not Interpolated by a One-Layer Function |
|
|
140 | (1) |
|
5 Two Layer One Weight Models 2L1W |
|
|
141 | (6) |
|
5.1 Generic, Strictly Generic and Non-generic Weights |
|
|
141 | (1) |
|
5.2 Definition of a Two Layer One Weight Model 2L1W |
|
|
142 | (3) |
|
|
145 | (2) |
|
|
147 | (3) |
|
6.1 The Two Layer Sum Model: 2LS |
|
|
148 | (1) |
|
6.2 The Three Layer Binary Model: BIN |
|
|
149 | (1) |
|
7 Summary and Research Directions |
|
|
150 | (2) |
|
Appendix: Results on Example 2D Data Sets |
|
|
152 | (26) |
|
Description of Sequential Variation Results |
|
|
152 | (2) |
|
Description of Model Results |
|
|
154 | (1) |
|
Model Results for the Generalized Xor Data Set |
|
|
154 | (3) |
|
|
157 | (21) |
|
|
178 | (3) |
|
On Large-Scale Dynamic Topic Modeling with Nonnegative CP Tensor Decomposition |
|
|
181 | (30) |
|
|
|
|
|
|
|
|
|
|
|
|
181 | (2) |
|
|
183 | (6) |
|
2.1 NMF-Based Nonnegative Tensor Decompositions |
|
|
184 | (2) |
|
2.2 CANDECOMP/PARAFAC (CP) Decomposition and NNCPD |
|
|
186 | (3) |
|
3 Comparison of NNCPD and NMF-Based Nonnegative Tensor Decompositions |
|
|
189 | (19) |
|
3.1 Synthetic Dataset Numerical Experiments |
|
|
189 | (11) |
|
3.2 The 20 Newsgroups Dataset Numerical Experiments |
|
|
200 | (4) |
|
3.3 Noise Dataset Robustness Numerical Experiments |
|
|
204 | (4) |
|
|
208 | (1) |
|
|
209 | (2) |
|
A Simple Recovery Framework for Signals with Time-Varying Sparse Support |
|
|
211 | (22) |
|
|
|
|
|
|
|
|
|
211 | (2) |
|
|
212 | (1) |
|
|
213 | (1) |
|
|
213 | (3) |
|
2.1 Description of Framework |
|
|
215 | (1) |
|
|
216 | (3) |
|
3.1 MMV Sparse Randomized Kaczmarz with Prior Information |
|
|
217 | (1) |
|
3.2 Weighted L2,1-Minimization |
|
|
217 | (1) |
|
3.3 Weighted MMV Stochastic Gradient Matching Pursuit |
|
|
218 | (1) |
|
|
219 | (9) |
|
4.1 Experiments with Synthetic Data |
|
|
220 | (2) |
|
4.2 Experiments with Real-World Data |
|
|
222 | (3) |
|
|
225 | (3) |
|
|
228 | (1) |
|
|
228 | (5) |
Part IV Data Analysis |
|
|
Role Detection and Prediction in Dynamic Political Networks |
|
|
233 | (20) |
|
|
|
|
|
|
|
|
|
|
|
|
233 | (1) |
|
|
234 | (2) |
|
|
236 | (4) |
|
|
236 | (2) |
|
3.2 Dynamic Role Prediction |
|
|
238 | (2) |
|
|
240 | (8) |
|
4.1 Data Processing and Graph Creation |
|
|
240 | (1) |
|
|
241 | (2) |
|
4.3 Role Results and Analysis |
|
|
243 | (2) |
|
4.4 Prediction and Validation Results |
|
|
245 | (3) |
|
5 Conclusion and Future Work |
|
|
248 | (1) |
|
|
249 | (4) |
|
Classifying Sleep States Using Persistent Homology and Markov Chains: A Pilot Study |
|
|
253 | (38) |
|
|
|
|
|
253 | (1) |
|
2 Sleep State Analysis Using Persistent Homology |
|
|
254 | (11) |
|
|
256 | (2) |
|
|
258 | (7) |
|
3 Visualizing Sleep Patterns of Eight OSA Patients |
|
|
265 | (4) |
|
4 Conclusion and Future Research |
|
|
269 | (1) |
|
|
270 | (18) |
|
|
288 | (3) |
|
A Survey of Statistical Learning Techniques as Applied to Inexpensive Pediatric Obstructive Sleep Apnea Data |
|
|
291 | (38) |
|
|
|
|
|
|
|
|
291 | (2) |
|
2 Pediatric Obstructive Sleep Apnea and Data |
|
|
293 | (5) |
|
|
293 | (1) |
|
|
294 | (2) |
|
|
296 | (2) |
|
|
298 | (7) |
|
|
299 | (2) |
|
|
301 | (2) |
|
3.3 Singular Value Decomposition |
|
|
303 | (2) |
|
4 Statistical Learning Methods |
|
|
305 | (7) |
|
4.1 Non-Bayesian Supervised Learning |
|
|
305 | (3) |
|
|
308 | (2) |
|
4.3 Unsupervised Learning |
|
|
310 | (2) |
|
|
312 | (6) |
|
5.1 Results for Survey Data |
|
|
314 | (1) |
|
5.2 Results for Craniofacial Data |
|
|
314 | (2) |
|
5.3 Results for Combined Survey and Craniofacial Data |
|
|
316 | (2) |
|
6 Conclusion and Future Research |
|
|
318 | (2) |
|
|
320 | (6) |
|
|
326 | (3) |
|
Nonparametric Estimation of Blood Alcohol Concentration from Transdermal Alcohol Measurements Using Alcohol Biosensor Devices |
|
|
329 | (32) |
|
|
|
|
|
329 | (2) |
|
1.1 Alcohol Biosensor Devices |
|
|
329 | (2) |
|
|
331 | (1) |
|
|
332 | (19) |
|
3.1 Partial Differential Equation Model Simulation |
|
|
332 | (10) |
|
3.2 Nonparametric Maximum Likelihood Estimator |
|
|
342 | (5) |
|
3.3 Nonparametric Adaptive Grid Algorithm |
|
|
347 | (4) |
|
4 Results of the Synthetic Data Experiments |
|
|
351 | (4) |
|
|
355 | (2) |
|
|
357 | (2) |
|
|
359 | (2) |
Appendix |
|
361 | |