Atnaujinkite slapukų nuostatas

Advances in Molecular Biophotonics [Kietas viršelis]

  • Formatas: Hardback, 416 pages, aukštis x plotis: 240x170 mm, weight: 926 g, 209 Illustrations, black and white
  • Išleidimo metai: 24-Apr-2017
  • Leidėjas: De Gruyter
  • ISBN-10: 3110304384
  • ISBN-13: 9783110304381
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 416 pages, aukštis x plotis: 240x170 mm, weight: 926 g, 209 Illustrations, black and white
  • Išleidimo metai: 24-Apr-2017
  • Leidėjas: De Gruyter
  • ISBN-10: 3110304384
  • ISBN-13: 9783110304381
Kitos knygos pagal šią temą:

Being the most active field in modern physics, Optical Physics has developed many new branches and interdisciplinary fields overlapping with various classical disciplines. This series summarizes the advancements of optical physics in the past twenty years in the following fields: High Field Laser Physics, Precision Laser Spectroscopy, Nonlinear Optics, Nanophotonics, Quantum Optics, Ultrafast Optics, Condensed Matter Optics, and Molecular Biophotonics.



  • Presents recent developments and application of fluorescent protein-labelling techniques and two-photon molecular probes.
  • Introduces the theoretical and experimental researches of super-resolution localization microscopy, photoacoustic molecular (functional) imaging, and optical molecular tomography for small animal in vivo.
  • Illustrates optical labeling techniques and imaging instruments and their application in biological studies.
  • Suits well for researchers and graduates in biomolecular photonics fields.
Preface vii
1 Fluorescent Protein Labeling Techniques
1(92)
Zhihong Zhang
Qingming Luo
1.1 Introduction
1(1)
1.2 Fluorescent proteins and their mutants
2(9)
1.2.1 Colorful fluorescent proteins
3(3)
1.2.2 Fluorescent proteins with LSSs
6(1)
1.2.3 Photon-activatable and photon-switchable fluorescent proteins
7(2)
1.2.4 Light-sensitive fluorescent proteins
9(1)
1.2.5 Timer fluorescent protein
10(1)
1.3 Reporter fluorescent protein probes
11(7)
1.3.1 Tracking proteins in live cells
11(3)
1.3.2 Monitoring of gene expression in live cells
14(1)
1.3.3 Biological applications of photon-switchable proteins and photon-activatable proteins
15(3)
1.4 Functional fluorescent protein probes
18(14)
1.4.1 Redox probes
18(3)
1.4.2 ATP fluorescent protein probes
21(1)
1.4.3 pH probes
22(2)
1.4.4 Voltage-sensitive probes
24(2)
1.4.5 Calcium probes
26(4)
1.4.6 Mercury ion probes
30(1)
1.4.7 Copper ion probes
30(1)
1.4.8 Zinc ion probes
31(1)
1.5 Fluorescence resonance energy transfer (FRET) probes
32(11)
1.5.1 Introduction of FRET
32(2)
1.5.2 FRET imaging in cell biology research
34(2)
1.5.3 Intramolecular FRET probes
36(4)
1.5.4 Intermolecular FRET probes
40(3)
1.6 BiFC technology based on fluorescent proteins
43(6)
1.6.1 Establishment of the BiFC detection method
43(1)
1.6.2 Characteristics of BiFC technology
44(2)
1.6.3 Applications of BiFC technology
46(2)
1.6.4 Quantitative detection of protein interaction based on fluorescence signal of BiFC
48(1)
1.6.5 Limiting factors of bimolecular fluorescent complementation
48(1)
1.6.6 Outlook for BiFC
49(1)
1.7 Intravital applications of fluorescent proteins in tumor imaging
49(14)
1.7.1 In vivo tumor optical imaging based on endogenously expressed fluorescent protein
50(9)
1.7.2 Optical imaging of tumor in vivo with targeting FP probes
59(3)
1.7.3 Prospects
62(1)
1.8 Applications of fluorescent protein transgenic mice in intravital immune optical imaging
63(30)
1.8.1 Fluorescent protein transgenic animal models
63(5)
1.8.2 Applications of fluorescent protein-labeled pathogens in infection and immune imaging
68(6)
Bibliography
74(19)
2 Two-photon Molecular Probe
93(101)
Yu Li
Lingyu Zeng
Zhihong Liu
Jingui Qin
2.1 Introduction of two-photon absorption
93(10)
2.1.1 The basic concept of 2PA
93(3)
2.1.2 Measurements of 2PA effect
96(3)
2.1.3 Introduction to application of 2PA effect
99(4)
2.2 Molecular design and structure-property relationships of organic TPA materials
103(16)
2.2.1 One-dimensional asymmetric D-n-A molecules
104(3)
2.2.2 One-dimensional symmetric molecules
107(5)
2.2.3 Porphyrins and expanded porphyrinoids
112(4)
2.2.4 Multidimensional branched 2PA materials
116(3)
2.3 The development of two-photon fluorescent probes
119(75)
2.3.1 Brief introduction to response principle of fluorescent probes
120(2)
2.3.2 Traditional fluorescent probes for two-photon imaging
122(1)
2.3.3 Typical fluorophores for TP probes
122(3)
2.3.4 Research development of TP probes
125(56)
2.3.5 Research prospection of TP probes
181(5)
Acknowledgment
186(1)
Bibliography
186(8)
3 Super-resolution Localization Microscopy
194(41)
Zhenli Huang
Yina Wang
Fan Long
Zhe Hu
Zeyu Zhao
3.1 Introduction and background
194(6)
3.1.2 Resolution limit of optical microscope
196(1)
3.1.3 Improving the resolution of optical microscope
197(1)
3.1.4 A Historical Overview of Super-Resolution Localization Microscopy
197(2)
3.1.5 Breaking the resolution limit by single-molecule localization
199(1)
3.2 Fluorescence probes for super-resolution localization microscopy
200(8)
3.2.1 Ensemble and single-molecule fluorescence
200(2)
3.2.2 Fluorescence probes and specific labeling
202(2)
3.2.3 Fluorescence ON/OFF control
204(1)
3.2.4 Choosing the right fluorescence probes
205(3)
3.3 Methods and instrumentation in super-resolution localization microscopy
208(10)
3.3.1 Super-resolution localization microscopy methods: PALM versus STORM
208(2)
3.3.2 Super-resolution localization microscopy methods: Others
210(1)
3.3.3 Instrumentation in super-resolution localization microscopy: Basic structure
210(1)
3.3.4 Instrumentation in super-resolution localization microscopy: Key components
211(3)
3.3.5 Instrumentation in super-resolution localization microscopy: A typical setup
214(2)
3.3.6 Advances in super-resolution localization microscopy: Multicolor and 3D imaging
216(1)
3.3.7 Commercial super-resolution localization microscopes
217(1)
3.4 Data analysis in super-resolution localization microscopy
218(9)
3.4.1 Theoretical localization precision
218(1)
3.4.2 Practical aspects for determining spatial resolution
219(1)
3.4.3 Single-molecule localization for sparse emitters
220(3)
3.4.4 Single-molecule localization for high-density emitters
223(2)
3.4.5 Key steps in image analysis and reconstruction
225(1)
3.4.6 Data analysis software
226(1)
3.5 Example applications in super-resolution localization microscopy
227(2)
3.5.1 Imaging in 2D
227(1)
3.5.2 Imaging in 3D
228(1)
3.6 Conclusions and future prospects
229(6)
Bibliography
230(5)
4 Photoacoustic Molecular (Functional) Imaging
235(89)
Da Xing
Sihua Yang
4.1 Introduction
235(3)
4.2 PAI principle, algorithm, and system
238(37)
4.2.1 PAI principle
238(1)
4.2.2 Excitation of photoacoustic signal
239(8)
4.2.3 Photoacoustic scanning method and its imaging algorithm
247(7)
4.2.4 PAI system
254(16)
4.2.5 Special problems involved
270(5)
4.3 Domestic and foreign statuses
275(23)
4.3.1 Foreign research status
275(11)
4.3.2 Domestic research status
286(12)
4.4 Application development trend
298(26)
4.4.1 Application research of photoacoustic microcirculation imaging and early tumor detection and treatment monitoring
299(7)
4.4.2 Research on application of living body photoacoustic blood function parameters (blood oxygen and carbon oxygen saturation) detection
306(3)
4.4.3 Application research on photoacoustic identification and imaging of vulnerable plaque components in blood vessels
309(4)
4.4.4 Application research on thermoacoustic imaging in testing of low-dentistry foreign bodies
313(2)
4.4.5 Application research on thermoacoustic imaging in testing of breast cancer
315(3)
Bibliography
318(6)
5 Optical Molecular Imaging for Small Animals in vivo
324(78)
Yong Deng
Xiaoquan Yang
Qingming Luo
5.1 Models of light propagation in tissue
324(19)
5.1.1 Introduction
324(1)
5.1.2 Light transport equation
325(4)
5.1.3 Diffusion approximation method
329(4)
5.1.4 Monte Carlo method
333(10)
5.2 Diffuse optical tomography
343(11)
5.2.1 Introduction
343(1)
5.2.2 DOT mode
344(4)
5.2.3 Image reconstruction methods in DOT
348(4)
5.2.4 Applications in biomedical research
352(2)
5.3 In vivo optical molecular imaging of small animals
354(21)
5.3.1 Introduction
354(1)
5.3.2 Planar fluorescence molecular imaging
355(6)
5.3.3 Fluorescence molecular tomography
361(9)
5.3.4 Bioluminescence tomography
370(5)
5.4 Multimodality molecular imaging of small animals in vivo
375(27)
5.4.1 Introduction
375(1)
5.4.2 Multimodality molecular imaging systems
376(6)
5.4.3 Image reconstruction and multimodal image fusion
382(5)
5.4.4 Applications in biomedical research
387(6)
Bibliography
393(9)
Index 402
Da Xing, South China Norm. Univ., China; Zhihong Zhang, Yong Deng, Zhenli Huang, HUST, China; Yu Li, Wuhan Univ., China.