Atnaujinkite slapukų nuostatas

El. knyga: Affective Computing and Sentiment Analysis: Emotion, Metaphor and Terminology

Edited by
Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This volume maps the watershed areas between two 'holy grails' of computer science: the identification and interpretation of affect – including sentiment and mood. The expression of sentiment and mood involves the use of metaphors, especially in emotive situations. Affect computing is rooted in hermeneutics, philosophy, political science and sociology, and is now a key area of research in computer science. The 24/7 news sites and blogs facilitate the expression and shaping of opinion locally and globally. Sentiment analysis, based on text and data mining, is being used in the looking at news and blogs for purposes as diverse as: brand management, film reviews, financial market analysis and prediction, homeland security. There are systems that learn how sentiments are articulated.

This work draws on, and informs, research in fields as varied as artificial intelligence, especially reasoning and machine learning, corpus-based information extraction, linguistics, and psychology.



This volume synthesises research and development in cognitive science and computing that deal with the automated assessment of human emotion. Affect computing systems are used in identifying terror threats, and are extensively used in marketing and finance. This volume comprises affect computing systems that learn to identify sentiment bearing sentences, and help in evaluating the polarity of opinion, positive/negative, in written text and speech.

1 Understanding Metaphors: The Paradox of Unlike Things Compared
1(12)
Sam Glucksberg
2 Metaphor as Resource for the Conceptualisation and Expression of Emotion
13(14)
Andrew Goatly
3 The Deep Lexical Semantics of Emotions
27(8)
Jerry R. Hobbs
Andrew S. Gordon
4 Genericity and Metaphoricity Both Involve Sense Modulation
35(18)
Carl Vogel
5 Affect Transfer by Metaphor for an Intelligent Conversational Agent
53(14)
Alan Wallington
Rodrigo Agerri
John Barnden
Mark Lee
Tim Rumbell
6 Detecting Uncertainty in Spoken Dialogues: An Exploratory Research for the Automatic Detection of Speaker Uncertainty by Using Prosodic Markers
67(12)
Jeroen Dral
Dirk Heylen
Rieks op den Akker
7 Metaphors and Metaphor-Like Processes Across Languages: Notes on English and Italian Language of Economics
79(10)
Maria Teresa Musacchio
8 The `Return' and `Volatility' of Sentiments: An Attempt to Quantify the Behaviour of the Markets?
89(12)
Khurshid Ahmad
9 Sentiment Analysis Using Automatically Labelled Financial News Items
101(14)
Michel Genereux
Thierry Poibeau
Moshe Koppel
10 Co-Word Analysis for Assessing Consumer Associations: A Case Study in Market Research
115(10)
Thorsten Teichert
Gerhard Heyer
Katja Schontag
Patrick Mairif
11 Automating Opinion Analysis in Film Reviews: The Case of Statistic Versus Linguistic Approach
125(16)
Damien Poirier
Cecile Bothorel
Emilie Guimier De Neef
Marc Boulle
Afterword: `The Fire Sermon' 141(4)
Name Index 145(2)
Subject Index 147