Atnaujinkite slapukų nuostatas

El. knyga: AI for Behavioural Science

  • Formatas: 130 pages
  • Išleidimo metai: 08-Dec-2022
  • Leidėjas: CRC Press
  • Kalba: eng
  • ISBN-13: 9781000831283
  • Formatas: 130 pages
  • Išleidimo metai: 08-Dec-2022
  • Leidėjas: CRC Press
  • Kalba: eng
  • ISBN-13: 9781000831283

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book is a concise introduction to emerging concepts and ideas found at the intersection of contemporary behavioural science and artificial intelligence. The book explores how these disciplines interact, change, and adapt to one another and what the implications of such an interaction are for practice and society.

AI for Behavioural Science book begins by exploring the field of machine behaviour, which advocates using behavioural science to investigate artificial intelligence. This perspective is built upon to develop a framework of terminology that treats humans and machines as comparable entities possessing their own motive power. From here, the notion of artificial intelligence systems becoming choice architects is explored through a series of reconceptualisations. The architecting of choices is reconceptualised as a process of selection from a set of choice architectural designs, while human behaviour is reconceptualised in terms of probabilistic outcomes. The material difference between the so-called "manual nudging" and "automatic nudging" (or hypernudging) is then explored. The book concludes with a discussion of who is responsible for autonomous choice architects.
Introduction 1(6)
1 Human Behaviour and Machine Behaviour
7(14)
Machine Behaviour
7(9)
Understanding Black Boxes
7(3)
Are Machines Behaving?
10(3)
Machines as Mirrors
13(2)
Programming Conflict
15(1)
Shifting Focus
16(1)
Summary:
Chapter 1
17(1)
Notes
17(4)
2 {Definitions: "..."}
21(14)
Introduction
21(1)
Behaviour
22(1)
Intelligence
23(2)
Machine
25(2)
Summary:
Chapter 2
27(1)
Notes
28(7)
3 The Autonomous Choice Architect
35(28)
Introduction
35(2)
Reconceptualisation (1): Sets of Possible Designs
37(3)
A Note on Potency
39(1)
Architecting Autonomously
40(7)
The Policymaker
41(1)
The Retailer
42(2)
The Informer
44(2)
The Shapeshifter
46(1)
Reconceptualisation (2): Nudging, through the Eye of a Machine
47(8)
Behavioural Friction
48(2)
Inverted-U
50(3)
What's in a Shape?
53(2)
Summary:
Chapter 3
55(1)
Notes
56(7)
4 Al Knows Best
63(22)
Introduction
63(1)
"What Is a Hypernudge?" Part 1
64(2)
"What Is a Hypernudge?" Part 2
66(5)
Dynamism
66(1)
Personalisation
67(2)
Real-time (Re)Configuration
69(1)
A Note on Predictive Capacity and Hiddenness
70(1)
Three Burdens
71(8)
The Burden of Avoidance
71(3)
The Burden of Understanding
74(3)
The Burden of Experimentation
77(2)
Summary:
Chapter 4
79(1)
Notes
80(5)
5 Some Concluding Discussions
85(14)
Strange Loops and Strange Realities
85(2)
Distance from Action
87(4)
Assumption of Error
91(3)
Behavioural Logic
94(3)
The Return of Behaviourism?
97(2)
Summary:
Chapter 5
99(1)
Notes 99(6)
References 105(16)
Index 121
Stuart Mills is a behavioural economist with a background in economics and political economy. His research focuses on nudge theory, personalisation, and digital economy. He is interested in the intersection of technology, data, and behavioural science within public policy and finance, as well as the wider political economy implications.