Atnaujinkite slapukų nuostatas

Algae: Anatomy, Biochemistry, and Biotechnology 3rd edition [Kietas viršelis]

, (Istituto di Biofisica, Pisa, Italy)
  • Formatas: Hardback, 438 pages, aukštis x plotis: 254x178 mm, weight: 1300 g, 37 Tables, black and white; 18 Line drawings, color; 126 Line drawings, black and white; 44 Halftones, color; 41 Halftones, black and white; 62 Illustrations, color; 167 Illustrations, black and white
  • Išleidimo metai: 13-Dec-2022
  • Leidėjas: CRC Press
  • ISBN-10: 1032035129
  • ISBN-13: 9781032035123
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 438 pages, aukštis x plotis: 254x178 mm, weight: 1300 g, 37 Tables, black and white; 18 Line drawings, color; 126 Line drawings, black and white; 44 Halftones, color; 41 Halftones, black and white; 62 Illustrations, color; 167 Illustrations, black and white
  • Išleidimo metai: 13-Dec-2022
  • Leidėjas: CRC Press
  • ISBN-10: 1032035129
  • ISBN-13: 9781032035123
Kitos knygos pagal šią temą:
A single-source reference on the biology of algae, the third edition of Algae: Anatomy, Biochemistry, and Biotechnology examines the most important taxa and structures for freshwater, marine, and terrestrial forms of algae. Its comprehensive coverage goes from algae's historical role through its taxonomy and ecology to its natural product possibilities.

In this update, the authors have gathered a significant amount of new material, including:





more information on macroalgae detailed description of biotic associations updated description of biomass cultivation systems coverage of different "omic" approaches and tools used in algal investigation an expanded and updated algae utilization chapter

The book's unifying theme is the important role of algae in the earth's self-regulating life support system and its function within restorative models of planetary health. It also discusses algae's biotechnological applications, including potential nutritional and pharmaceutical products.

Written for students as well as researchers, teachers, and professionals in the field of phycology and applied phycology, this new full-color edition is both illuminating and inspiring.
Preface xiii
Authors' Biographies xv
Introduction xvii
Chapter 1 General Overview
1(70)
Definition
1(1)
Classification
2(1)
Summaries of the 12 Algal Phyla
2(1)
Cyanobacteria
2(6)
Glaucophyta
8(1)
Rhodophyta
9(2)
Prasinodermatophyta and Chlorophyta
11(4)
Charophyta
15(2)
Haptophyta
17(1)
Cryptophyta
18(1)
Ochrophyta
19(4)
Miozoa---Dinophyceae
23(3)
Cercozoa---Chlorarachniophyceae
26(1)
Euglenozoa---Euglenophyceae
26(2)
Structure of Thallus---Cytomorphological Types
28(1)
Unicells and Unicell Colonial Type
28(1)
Filamentous Type
28(1)
Siphonocladous Type
28(4)
Siphonous Type
32(3)
Parenchymatous and Pseudo-Parenchymatous Type
35(1)
Palmelloid Type
36(1)
Nutrition
37(1)
Reproduction
38(1)
Vegetative and Asexual Reproduction
38(1)
Binary Fission or Cellular Bisection
38(1)
Zoospores, Aplanospores, and Autospores
38(1)
Autocolony Formation
38(2)
Fragmentation
40(1)
Resting Stages
40(1)
Sexual Reproduction
41(1)
Haplontic or Zygotic Life Cycle
41(1)
Diplontic or Gametic Life Cycle
42(1)
Diplohaplontic or Sporic Life Cycle
42(1)
Occurrence and Distribution
42(2)
Biotic Interactions
44(1)
Viruses
44(4)
Bacteria
48(2)
Arthropods
50(1)
Amphibians
51(2)
Reptiles
53(1)
Other Animals and Humans
53(3)
Extreme Habitats
56(1)
Cold Environments
56(2)
Hot Environments
58(2)
Dry Environments
60(2)
Space
62(1)
Endosymbiosis and the Origin of Eukaryotic Photosynthesis
63(8)
Chapter 2 Biogeochemical Role of Algae
71(30)
The Roles of Algae in Biogeochemistry
71(1)
The Oxygen and Carbon Cycles
72(4)
The Nitrogen Cycle
76(5)
The Phosphorus Cycle
81(2)
The Iron Cycle
83(5)
The Silicon Cycle
88(4)
The Sulfur Cycle
92(2)
Limiting Nutrients
94(7)
Chapter 3 Anatomy
101(114)
Cytomorphology and Ultrastructure
101(1)
Outside the Cell
101(1)
Type 1 Simple Cell Membrane
101(1)
Type 2 Cell Surface With Additional Extracellular Material
102(1)
Mucilages and Sheaths
102(1)
Scales
103(4)
Frustules
107(3)
Cell Walls
110(1)
Loricas
111(1)
Skeletons
112(2)
Type 3 Cell Surface With Additional Intracellular Material in Vesicles
114(2)
Type 4 Cell Surface With Additional Extracellular and Intracellular Material
116(3)
First Level
119(1)
Second Level
119(2)
Third Level
121(1)
Flagella and Associated Structures
122(1)
Flagellar Shape and Surface Features
123(1)
Flagellar Scales
123(3)
Flagellar Hairs
126(2)
Flagellar Spines
128(1)
Internal Features
128(1)
Axoneme
128(1)
Paraxial Rod
129(1)
Other Intra-Flagellar Accessory Structures
130(2)
Transition Zone
132(4)
Basal Bodies
136(2)
Root System
138(1)
Glaucophyta
139(1)
Prasinodermatophyta, Chlorophyta, Charophyta
139(6)
Haptophyta
145(1)
Cryptophyta
145(2)
Ochrophyta
147(3)
Cercozoa---Chlorarachniophyceae
150(1)
Miozoa---Dinophyceae
151(1)
Euglenozoa---Euglenophyceae
152(2)
How Algae Move
154(1)
Swimming
154(11)
Movements Other Than Swimming
165(3)
Buoyancy Control
168(2)
How a Flagellum Is Built: Intra-Flagellar Transport
170(1)
How a Flagellar Motor Works
170(1)
How a Paraxial Rod Works
171(1)
The Photoreceptor Apparatus
171(2)
Types of Photoreceptive Systems
173(1)
Type I
173(2)
Type II
175(2)
Type III
177(1)
Photoreceptive Proteins
177(3)
Behavioral and Physiological Features
180(1)
Sampling Strategies
181(1)
Trajectory Control
182(1)
Signal Transmission
183(1)
An Example: Photoreceptor and Photoreception in Euglena
183(5)
Chloroplasts
188(1)
Cyanobacteria
189(1)
Glaucophyta
189(2)
Rhodophyta
191(1)
Prasinodermatophyta, Chlorophyta, Charophyta
191(1)
Haptophyta
192(1)
Cryptophyta
192(1)
Ochrophyta
193(1)
Cercozoa---Chlorarachniophyceae
194(1)
Miozoa---Dinophyceae
195(2)
Euglenozoa---Euglenophyceae
197(1)
The Nucleus, Nuclear Division, and Cytokinesis
198(1)
Rhodophyta
199(1)
Prasinodermatophyta, Chlorophyta, Charophyta
199(1)
Cryptophyta
200(1)
Miozoa---Dinophyceae
200(1)
Euglenozoa---Euglenophyceae
201(2)
Ejectile Organelles and Feeding Apparatus
203(1)
Prasinodermatophyta, Chlorophyta, Charophyta
203(1)
Haptophyta
203(1)
Cryptophyta
204(1)
Ochrophyta
205(1)
Cercozoa---Chlorarachiophyceae
205(1)
Miozoa---Dinophyceae
205(2)
Euglenozoa---Euglenophyceae
207(8)
Chapter 4 Photosynthesis
215(42)
Light
215(3)
Photosynthesis
218(1)
Light-Dependent Reactions
219(8)
PSII and PSI: Structure, Function, and Organization
227(2)
ATP---Synthase
229(1)
ETC Components
230(1)
Electron Transport: The Z-Scheme
231(1)
Proton Transport: Mechanism of Photosynthetic Phosphorylation
232(2)
Pigment Distribution in PSII and PSI Super-Complexes of Algal Division
234(1)
Light-Independent Reactions
235(1)
RuBisCO
235(6)
Calvin Benson Bassham Cycle
241(1)
Carboxylation
242(1)
Reduction
242(1)
Regeneration
242(1)
Photorespiration
242(1)
The Photosynthesis-Irradiance Response Curve (P-vs-E Curve)
243(3)
Photoacclimation
246(1)
Photosynthesis in Light-Limited Environments
247(4)
The Energy Relationships in Photosynthesis: The Balance Sheet
251(6)
Chapter 5 Culturing
257(50)
Collection, Storage, and Preservation
257(3)
Culture Types
260(2)
Culture Parameters
262(1)
Temperature
263(1)
Light
263(1)
pH
263(1)
Salinity
263(1)
Mixing
263(1)
Culture Vessels
264(1)
Media Choice and Preparation
264(1)
Freshwater Media
265(8)
Marine Media
273(1)
Seawater Base
273(1)
Nutrients, Trace Metals, and Chelators
274(2)
Vitamins
276(1)
Soil Extract
277(1)
Buffers
277(7)
Sterilization of Culture Materials
284(2)
Culture Methods
286(1)
Microalgae
286(1)
Batch Cultures
286(3)
Continuous Cultures
289(1)
Semi-Continuous Cultures
290(1)
Commercial-Scale Cultures
290(1)
Outdoor Ponds
291(2)
Photobioreactors
293(3)
Culture of Sessile Micro-Algae
296(1)
Macroalgae
296(1)
Onshore Cultivation
296(1)
Offshore Cultivation
297(1)
Nearshore Cultivation
297(1)
Integrated Multitrophic Aquaculture
298(1)
Quantitative Determinations of Algal Density and Growth
298(5)
Growth Rate and Generation Time Determinations
303(4)
Chapter 6 Utilization
307(78)
Human Food
308(1)
Cyanobacteria
308(2)
Rhodophyta
310(5)
Ochrophyta---Phaeophyceae
315(6)
Chlorophyta
321(3)
Animal Feed
324(3)
Hydrocolloids
327(2)
Agar
329(1)
Alginates
330(1)
Carrageenan
331(1)
Fertilizers
332(3)
Cosmetics
335(1)
Functional Foods and Nutraceuticals
336(10)
Harmful Algal Blooms and Toxins
346(4)
Cyanophyceae
350(1)
Prymnesiophyceae
351(1)
Bacillariophyceae
351(1)
Raphidophyceae
352(1)
Dinophyceae
353(3)
Algae as Tools for Environmental Monitoring
356(1)
Flow Cytometry
356(1)
Metagenomic Analysis
357(1)
Remote Sensing
358(1)
Digital Microscopy
358(3)
Algae as Tools for Bioremediation
361(1)
Heavy Metals
361(3)
Food Industry Wastewater
364(1)
Algae in a Bio-Based Economy
365(3)
Algae-Based Products: Use and Market Scenarios
368(5)
Exploitation of the Algae Potential for Different Target Markets
373(3)
Sustainability
376(9)
Chapter 7 Working With Light
385(36)
How Light Behaves
385(1)
Scattering
385(1)
Absorption
386(1)
Fluorescence
387(2)
Interference
389(1)
Reflection
389(2)
Refraction
391(1)
Dispersion
392(1)
Diffraction
392(2)
Lab Instruments
394(1)
The Microscope
394(2)
Bright Field Microscopy
396(1)
Steps in Establishing Kohler Illumination
397(1)
Numerical Aperture, Airy Disk, and Microscope Resolution
398(1)
CCD Cameras for Optical Microscopy
399(2)
Fluorescence Microscopes
401(1)
Light Sources for Microscopy
402(1)
Digital Microscopy
403(1)
Hardware
403(1)
Software
404(1)
An Alternative "Simple" Method for Obtaining Algae Absorption Spectra
404(2)
Field Instruments
406(2)
Radiometry
408(1)
Measurement Geometries: Solid Angles
408(1)
Radiant Energy
408(1)
Spectral Radiant Energy
408(1)
Radiant Flux (Radiant Power)
409(1)
Spectral Radiant Flux (Spectral Radiant Power)
409(1)
Radiant Flux Density (Irradiance and Radiant Exitance)
409(1)
Spectral Radiant Flux Density
410(1)
Radiance
410(1)
Spectral Radiance
410(1)
Radiant Intensity
411(1)
Spectral Radiant Intensity
411(1)
Photometry
411(1)
Luminous Flux (Luminous Power)
412(1)
Luminous Intensity
412(2)
Luminous Energy
414(1)
Luminous Flux Density (Illuminance and Luminous Exitance)
414(1)
Luminance
414(1)
Lambertian Surfaces
414(2)
Unit Conversion
416(1)
Radiant and Luminous Flux (Radiant and Luminous Power)
416(1)
Irradiance (Flux Density)
416(1)
Radiance
417(1)
Radiant Intensity
417(1)
Luminous Intensity
417(1)
Luminance
417(1)
Geometries
417(1)
PAR Detectors
418(3)
Subject Index 421(12)
Index 433
Dr. Laura Barsanti graduated in Natural Sciences from University of Pisa (Italy) and though she dreamed of sailing the seas to study whales and dolphins, she ended up chasing microalgae on a microscope slide. She realized she liked it, and she kept doing it for more than 40 years before at the Centro Studi Microrgansmi Autotrofi in Florence, then at the Biophysics Institute in Pisa, where she still does it today. She authored 3 books and edited 3 more; she published about 200 papers and patents.

Dr. Paolo Gualtieri graduated in Biology and Computer Science from University of Pisa (Italy) and then took his PhD in Biophysics at the same University. He has been visiting professor with many different research institutes around the world (Max Plank Institute for Biophysical Chemistry of Gottingen, Max Plank Institute for Biochemistry of Martinsried, CNRS Marine Station of Villefranche sur Mer, NIH Bethesda, University of Marburg, University of Regensburg, Computer Science Center of the University of Maryland, University of Tenneesse, and Purdue University). At present he is senior scientist at the Biophysics Institute of the National Council of Research (CNR) in Pisa (Italy) and Adjunct Professor of University of Maryland, University College (College Park, Ma, USA). He gave over 30 keynote international lectures, authored 3 books and edited 3 more; he published and about 200 papers and patents, as well as serving on many international boards. Paolo used to be a tennis teacher, now he just plays; he has a Conservatory of Music diploma in piano and another one in trumpet, and he does enjoy playing both.