Atnaujinkite slapukų nuostatas

El. knyga: Algebraic And Geometric Combinatorics On Lattice Polytopes - Proceedings Of The Summer Workshop On Lattice Polytopes

Edited by (Osaka Univ, Japan), Edited by (Osaka Univ, Japan)
  • Formatas: 476 pages
  • Išleidimo metai: 30-May-2019
  • Leidėjas: World Scientific Publishing Co Pte Ltd
  • Kalba: eng
  • ISBN-13: 9789811200496
Kitos knygos pagal šią temą:
  • Formatas: 476 pages
  • Išleidimo metai: 30-May-2019
  • Leidėjas: World Scientific Publishing Co Pte Ltd
  • Kalba: eng
  • ISBN-13: 9789811200496
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This volume consists of research papers and expository survey articles presented by the invited speakers of the Summer Workshop on Lattice Polytopes. Topics include enumerative, algebraic and geometric combinatorics on lattice polytopes, topological combinatorics, commutative algebra and toric varieties.Readers will find that this volume showcases current trends on lattice polytopes and stimulates further developments of many research areas surrounding this field. With the survey articles, research papers and open problems, this volume provides its fundamental materials for graduate students to learn and researchers to find exciting activities and avenues for further exploration on lattice polytopes.
Preface v
Introduction to toric geometry with a view towards lattice polytopes 1(37)
J. Hofscheier
A brief introduction to valuations on lattice polytopes
38(18)
K. Jochemko
Ehrhart positivity and Demazure characters
56(16)
P. Alexandersson
E. Alhajjar
Families of 3-dimensional polytopes of mixed degree one
72(13)
G. Balletti
C. Borger
Some lattice parallelepipeds with unimodular covers
85(16)
M. Blanco
A brief survey on lattice zonotopes
101(16)
B. Braun
A. R. Vindas-Melendez
A pithy look at the polytope algebra
117(15)
F. Castillo
Restrictions on the singularity content of a Fano polygon
132(15)
D. Cavey
Finding a fully mixed cell in a mixed subdivision of polytopes
147(18)
G. Codenotti
L. Walter
Predicting the integer decomposition property via machine learning
165(17)
B. Davis
Lattice polytopes in mathematical physics
182(18)
A. Engstrom
F. Kohl
A brief survey about moment polytopes of subvarieties of products of Grassmanians
200(17)
L. Escobar
Cubical Dehn-Sommerville equations and self-reciprocal cubical complexes
217(13)
M. Hlavacek
Hollow lattice polytopes: Latest advances in classification and relations with the width
230(12)
O. Iglesias-Valino
The Lecture Hall cone as a toric deformation
242(12)
L. Katthan
A short survey on Tesler matrices and Tesler polytopes
254(11)
Y. Lee
Eberhard-type theorems with two kinds of polygons
265(15)
S. Manecke
Complete intersection Calabi--Yau threefolds in Hibi toric varieties and their smoothing
280(16)
M. Miura
Technically, squares are polytopes
296(13)
L. Ng
On local Dressians of matroids
309(21)
J. A. Olarte
M. Panizzut
B. Schroter
Polyhedral geometry for lecture hall partitions
330(24)
M. Olsen
A note on deformations and mutations of fake weighted projective planes
354(13)
I. Portakal
Special cases and a dual view on the local formulas for Ehrhart coefficients from lattice tiles
367(15)
M. H. Ring
Local h*-polynomials of some weighted projective spaces
382(18)
L. Solus
On the faces of simple polytopes
400(8)
J. Steinmeyer
Notes on toric Fano varieties associated to building sets
408(16)
Y. Suyama
A Reider-type result for smooth projective toric surfaces
424(11)
B. L. Tran
Face enumeration on flag complexes and flag spheres
435(15)
H. Zheng
Open problems from the 2018 Summer Workshop on Lattice Polytopes at Osaka University
450(15)
G. Balletti
F. Castillo
L. Solus
B. L. Tran
A. Tsuchiya
Author index 465